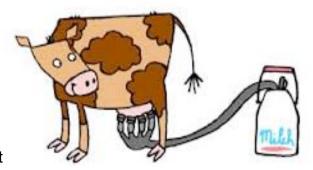
ETH zürich

751-6212-00L Angewandte Zuchtwertschätzung für Nutztiere

Birgit Gredler-Grandl

Heutige Vorlesung

- Zuchtwertschätzung Rind
 - Melkbarkeit
 - Milch, Zellzahl, Persistenz
 - Index-Zuchtwerte
 - Imputation und Genomische Zuchtwertschätzung
 - Aktuelle Projekte



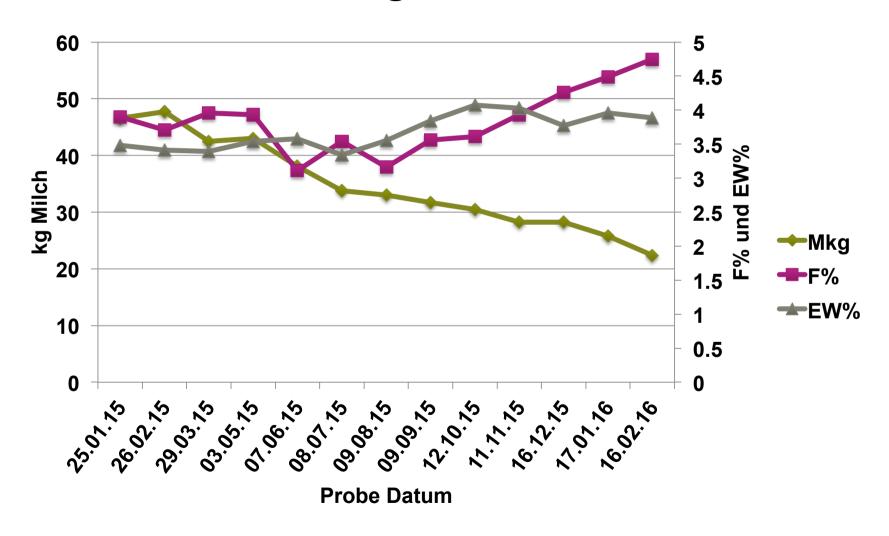
Zuchtwertschätzung Schaf und Ziege

Zuchtwertschätzung Melkbarkeit

- Eigenschaft einer Kuh, Milch gleichmässig und vollständig abzugeben
- Angestrebt wird ein Optimum und nicht das Extrem
- Daten aus Befragung der Züchter bei Erstmelkkühen
- Gleiches Verfahren wie ZWS Exterieur
- Heritabilitäten: 0.17 (gemeinsame ZWS)
 - 0.14 (Braunvieh)
- Standardisierung 100/12
- Basis 6- bis 8-jährige Kühe

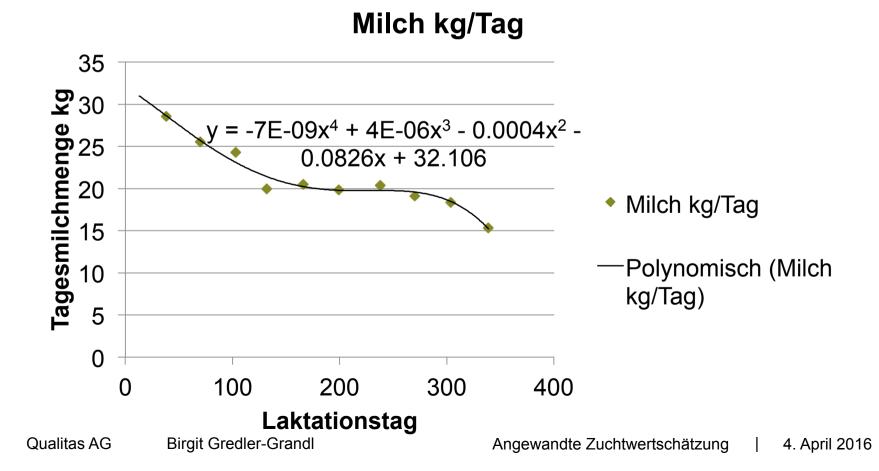
Zuchtwertschätzung Milch Zellzahl Persistenz

Qualitas AG Birgit Gredler-Grandl


Angewandte Zuchtwertschätzung

4. April 2016

Geschichte ZWS Milch


- Entwicklung Modelle eng verknüpft mit Entwicklung Computer (Rechenkapazität)
- 1980er Jahre: BLUP Vatermodell
- 1990er Jahre: BLUP Wiederholbarkeits-Tiermodell (Laktationsleistungen)
- 2000: Fixed Regression Testtagsmodell
 - Milchproben inh. Lakt. als wiederholte Beobachtung
- 2005: Random Regression Testtagsmodell
 - Individueller Laktationsverlauf

Longitudinale Daten – wiederholte Messungen eines Merkmals entlang einer Zeitachse

Random regression Modell

- Longitudinale Daten
- Funktion (z.B. Polynom) in Abhängigkeit der Zeit (Laktationstag) um den Verlauf der Daten zu modellieren

Laktationskurven - Polynome

- Abhängig von Laktationstag (t)
 y = b₀ + b₁ * t + b₂ * t² + b₃ * t³ + b₄ * t⁴ + e
- Mit herkömmlichen Polynomen werden die zeitabhängigen Kovariablen rasch sehr gross:
 z.B. t = 100 => t⁴ = 100'000'000
- Um numerische Probleme zu vermeiden, werden stattdessen sogenannte orthogonale Polynome verwendet, z.B. Legendre Polynome
 - Laktationstage transformiert auf Bereich -1 bis +1

Random Regression Testday model

$$y_{tijk} = htd_i + \sum_{k=0}^{nf} \phi_{jtk} \beta_k + \sum_{k=0}^{nr} \phi_{jtk} \mathbf{u}_{jk} + \sum_{k=0}^{nr} \phi_{jtk} \mathbf{p} \mathbf{e}_{jk} + e_{tijk}$$

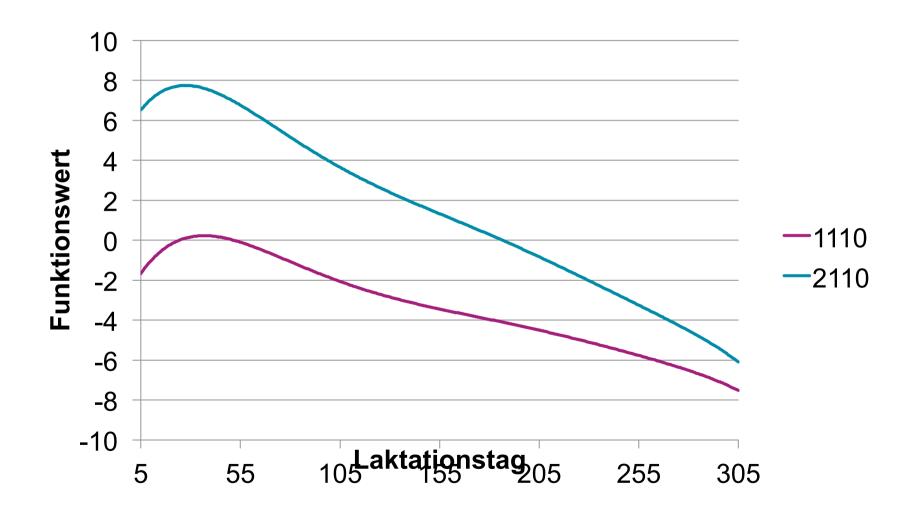
where y_{tijk} is the test day record of cow j made on day t within htd subclass i; β_k are fixed regression coefficients; u_{jk} and pe_{jk} are the kth random regression for animal and permanent environmental effects, respectively, for animal j; ϕ_{jtk} is the kth Legendre polynomial for the test day record of cow j made on day t; nf is the order of polynomials fitted as fixed regressions; nr is the order of polynomials for animal and pe effects; and e_{tijk} is the random residual.

Mrode, 2005, p 143

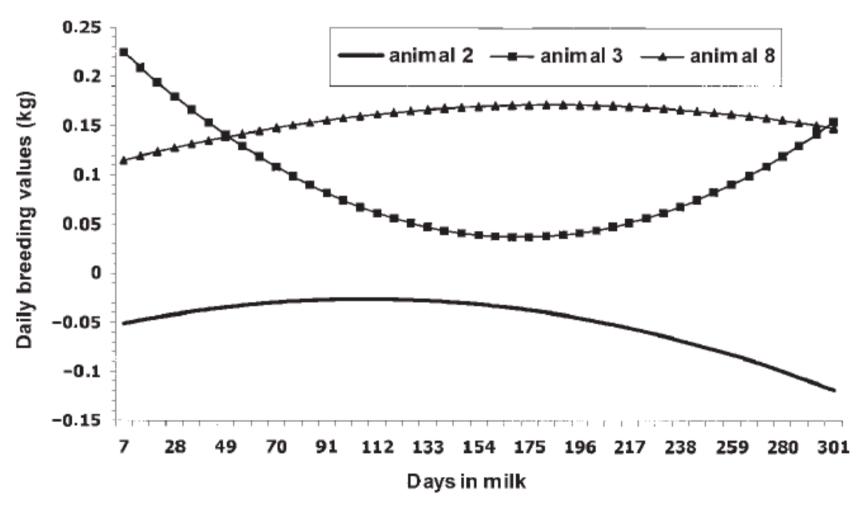
Random Regression Test Day Model

- Zuchtwert wird durch zufällige Regressionskoeffizienten beschrieben
- Für jeden Laktationstag wird ein eigener Zuchtwert berechnet
- Zuchtwert kann sich im Laktationsverlauf ändern
- Umwelteinflüsse werden direkt auf Ebene des Testtages berücksichtigt (Wetter, Futterumstellung, ...)
- Herdenkontrolltag ist kleinste Vergleichsgruppe
- Probegemelke von der Alp können korrekt berücksichtigt werden

Random Regression Test Day Model


- BLUP Mehrmerkmals Tiermodell
- 4 Merkmale:
 - Milch kg
 - Fett kg
 - Eiweiss kg
 - Zellzahl (wird vorher log-transformiert Somatic Cell Score SCS)
- Vorkorrekturen:
- Anzahl Tage trächtig
- Korrektur von heterogener Streuung (Herdenvarianz)
 - Unterschiedliche Streuung in versch. Herden
 - Herden mit hoher/niedriger Streuung: Kühen weichen mehr/oder weniger vom Herdenmittel ab
 - Genetisch oder management-bedingt

Random Regression Test Day Model


- Effekte:
- Fixer Effekt Herdentesttag
- Fixe Laktationskurven (Polynom 6. Grad)
 - abhängig von:
 - Laktationsnummer
 - Kalbealter
 - Kalbejahr
 - Kalbesaison (gemZWS: Nov-Jan, Feb-Juni, Juli-Okt)
 - Region/Zone/Alpung (4 Regionen)
- Zufälliger Effekt permanente Umwelt (Polynom 4. Grad)
 - 5 Kurven pro Kuh: 1. 4., 5.ff. Laktation
- Zufälliger additiv. genet. Tiereffekt (Zuchtwert, Polynom 4. Grad)
 - 3 Kurven pro Tier: 1., 2., 3.ff. Laktation

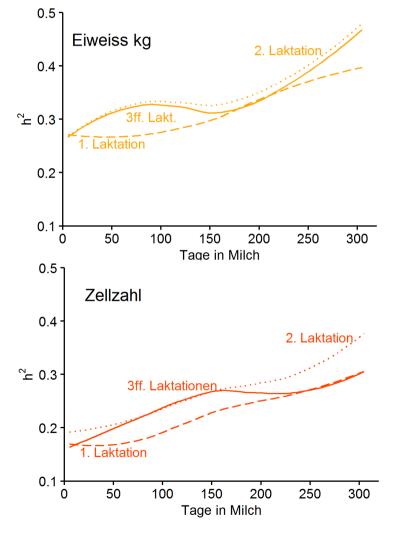
Legendre Polynome - Laktationskurven

Tägliche Zuchtwerte (Mrode, 2005, p.148)

Qualitas AG

Birgit Gredler-Grandl

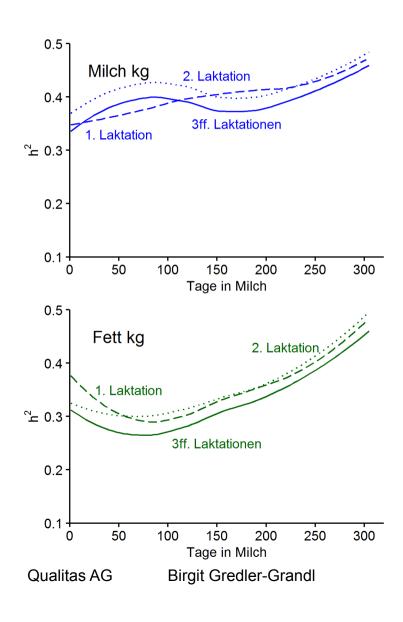
Datenselektion und Daten ZWS April 2016

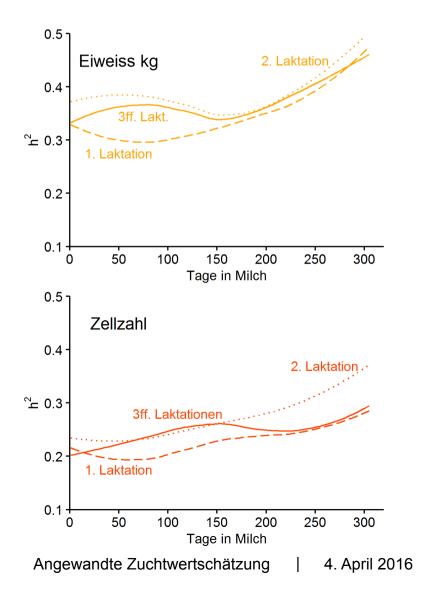

	Braunvieh	gemZWS			
Erstkalbedatum	1.1.1989	SHB 1.1.1987 SHZV 1.1.1993			
4. ff Laktation	1., 2. oder 3. Laktation vorhanden				
Laktationstage	5 bis	365			
Milchproben	38'941'287	55'359'260			
Kühe mit Milchproben	1'408'397	2'205486			
Tiere im Pedigree	1'858'284	2'778'067			
Herdentesttage	3'731'621	5'033'300			

Genetische Parameter

- Annahme, dass an jedem Laktationstag andere Gene für die Ausprägung des Merkmals verantwortlich sind bzw. unterschiedliche Wirkung haben
- Genetische Beziehungen zwischen Laktationstagen innerhalb Laktation und zwischen Laktationen k\u00f6nnen ber\u00fccksichtigt werden
- Unterschiede:
 - Merkmale Milch, Fett, Eiweiss, Zellzahl
 - Laktationen
 - Laktationstagen
 - Rassen

Genetische Parameter Braunvieh





Angewandte Zuchtwertschätzung

4. April 2016

Genetische Parameter gemZWS

Genetische Parameter Braunvieh

	M1	F1	E1	SCS 1	M2	F2	E2	SCS 2	M3	F3	E3	SCS 3
M1	.37											
F1	.79	.31										
E1	.88	.83	.32									
SCS1	08	06	06	.22								
M2	.80	.61	.71	07	.38							
F2	.58	.77	.65	05	.79	.31						
E2	.67	.64	.80	07	.88	.85	.35					
SCS2	09	08	07	.74	23	22	21	.27				
M3	.74	.52	.64	05	.91	.68	.79	19	.36			
F3	.54	.69	.59	05	.72	.89	.77	19	.79	.28		
E3	.56	.51	.69	05	.77	.73	.90	18	.87	.85	.34	
SCS3	.03	.02	.03	.66	11	11	10	.82	13	15	14	.25

Qualitas AG

Birgit Gredler-Grandl

Angewandte Zuchtwertschätzung

4. April 2016

Genetische Parameter gemZWS

	M1	F1	E1	SCS 1	M2	F2	E2	SCS 2	M3	F3	E3	SCS 3
M1	.40											
F1	.61	.35										
E1	.88	.74	.34									
SCS1	.06	.04	.05	.23								
M2	.81	.46	.71	02	.42							
F2	.45	.83	.58	02	.62	.35						
E2	.68	.59	.80	01	.88	.76	.39					
SCS2	.02	01	.02	.71	15	16	14	.27				
M3	.76	.39	.67	04	.90	.53	.80	18	.39			
F3	.41	.76	.55	04	.54	.90	.70	15	.63	.33		
E3	.59	.52	.73	04	.75	.67	.90	15	.87	.79	.37	
SCS3	.09	.04	.07	.64	07	10	08	.78	11	14	12	.25

Qualitas AG

Birgit Gredler-Grandl

Angewandte Zuchtwertschätzung

4. April 2016

ETH zürich

Genetische Korrelation Braunvieh, Fleckvieh, Holstein Fett % und Eiweiss %

	Mkg	Fkg	Ekg	F%	E%
	0.77				
Fkg	0.61				
	0.56				
	0.86	0.81			
Ekg	0.87	0.72			
	0.87	0.68			
	-0.22	0.45	0.03		
F%	-0.40	0.48	-0.13		
	-0.42	0.52	-0.15		
	-0.40	-0.05	0.12	0.48	
E%	-0.54	-0.01	-0.06	0.59	
	-0.54	0.04	-0.05	0.60	
	-0.06	-0.10	-0.09	-0.08	-0.04
ZZ	0.11	0.03	0.08	-0.09	-0.09
	0.03	-0.05	0.02	-0.09	-0.02

Laktationszuchtwerte

- Summe der Zuchtwerte von Laktationstag 5 bis 305
- Jeweils für 1., 2. und 3.ff Laktation
- Milch-kg, Fett-kg, Eiweiss-kg und Zellzahl
- Kombination der Laktationszuchtwerte:
- Ziel maximaler Zuchtfortschritt basierend auf 4 Laktationen
- Zuchtwert = 1/3 ZW 1. L + 1/3 ZW 2. L + 1/3 3.ff L

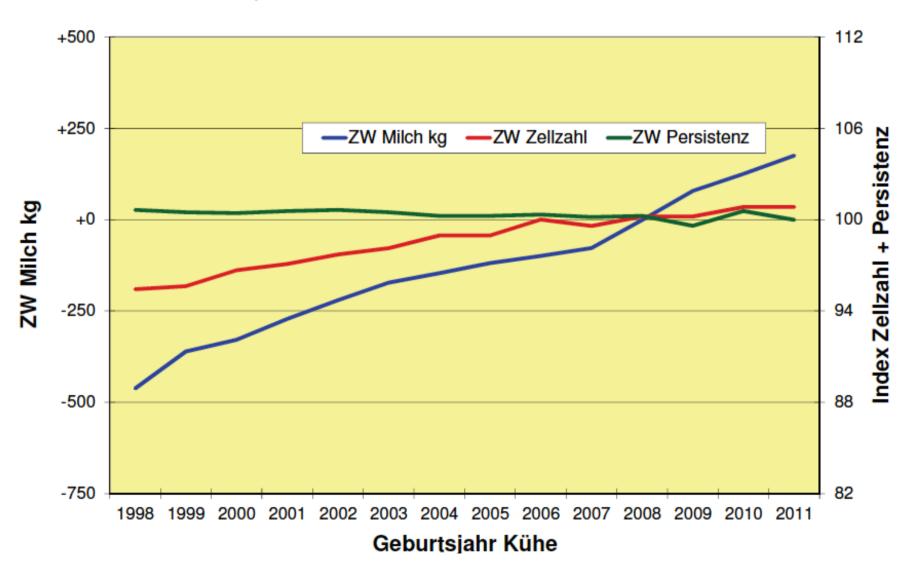
Zuchtwerte für Fett % und Eiweiss %

ZW F% = 200 *
$$\frac{\text{(BasisFkg + 0.5*ZWFkg)}}{\text{(BasisMkg + 0.5*ZWMkg)}} - \text{BasisF}\%$$

ZW EW% = 200 *
$$\frac{\text{(BasisEWkg + 0.5*ZWEWkg)}}{\text{(BasisMkg + 0.5*ZWMkg)}} - \text{BasisEW%}$$

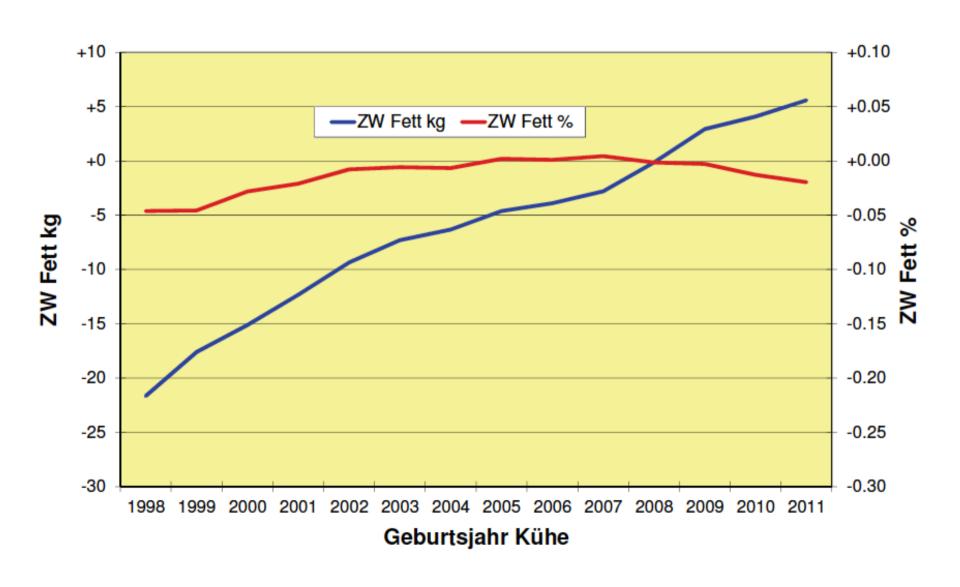
- BasisF% = BasisFkg/BasisMkg
- BasisEW% = BasisEWkg/BasisMkg
- BasisMkg, BasisFkg, BasisEWkg: durchschnittliche phänotypische Standardlaktationsleistung (Milch kg, Fett kg, EW kg) der Basistiere
- BasisF% und BasisEW%: durchschnittlicher phänotypischer Fett- und Eiweissgehalt der Basistiere (Standardlaktation)
- Z.B. Braunvieh: BasisFkg = 282.18 BasisMkg = 7080.3

Darstellung Zuchtwerte

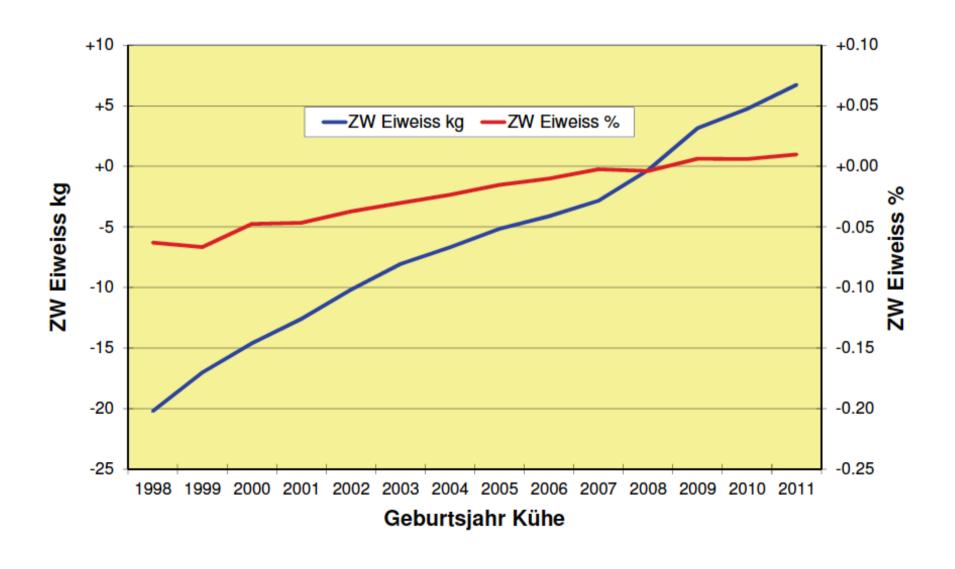

- Darstellung in naturalen Einheiten
- Mittelwert 0/genetische Standardabweichung jeweiliges Merkmal:

	Braunvieh	gemZWS
Milch kg	565	694
Fett kg	22.7	28.8
Eiweiss kg	17.3	20.3
Fett %	0.20	0.31
Eiweiss %	0.13	0.14

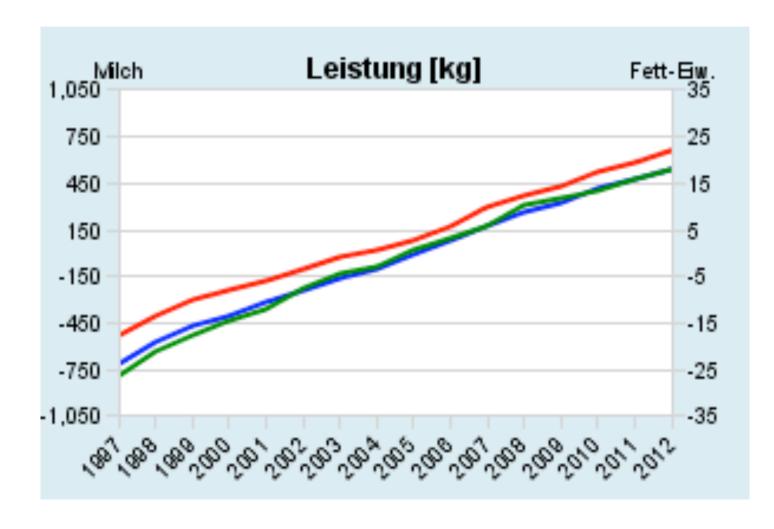
- Zellzahl: Standardisierung 100/12
- Basis 6- bis 8-jährige Kühe


Genetischer Trend Braunvieh

Milch, Zellzahl und Persistenz - Basis BV15

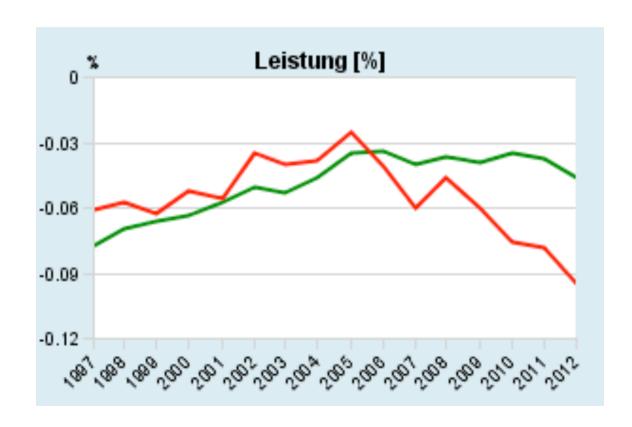

Genetischer Trend Braunvieh

Fettmenge und -gehalt - Basis BV15

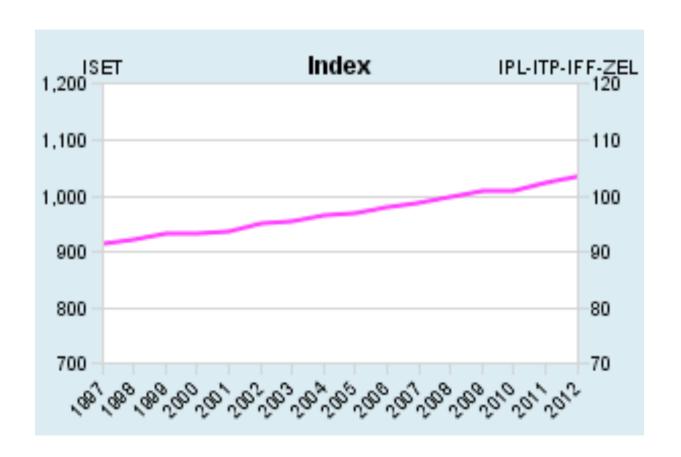


Genetischer Trend Braunvieh

Eiweissmenge und -gehalt - Basis BV15



Genetischer Trend Holstein


kg Milch kg Fett kg Eiweiss

Genetischer Trend Holstein

% Fett
% Eiweiss

Genetischer Trend Holstein

Zellzahl

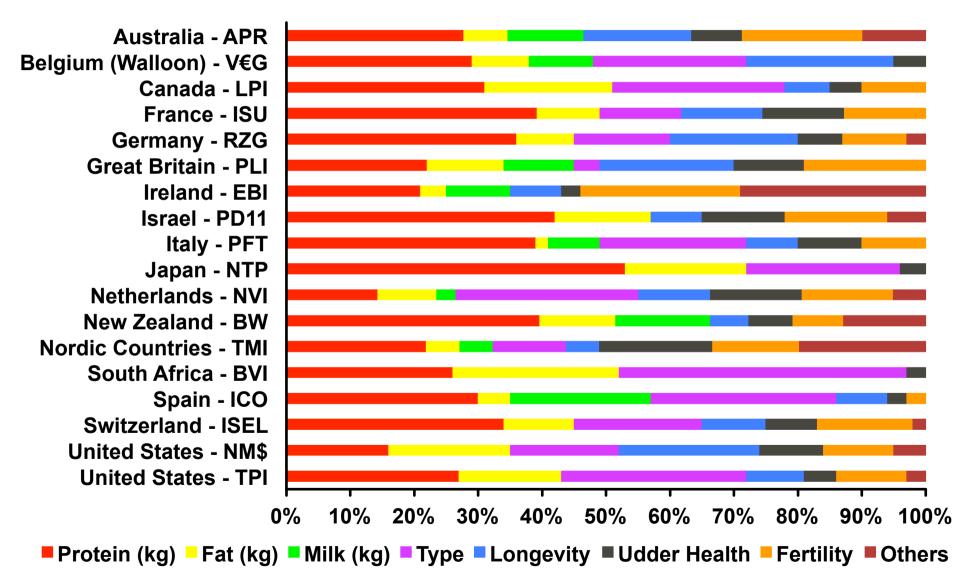
Zuchtwert Persistenz

- Persistenz = Durchhaltevermögen bei Milchleistungsmerkmalen über die Laktation
- Bei gleicher Laktationsleistung wird eine niedrige Laktationsspitze mit einem flachen Verlauf der Milchleistungskurve über die Laktation als vorteilhaft bezeichnet.
- Zuchtwert Persistenz lässt sich aus der Laktationskurve aus dem Testtagsmodell ableiten
- Vergleich der Milchleistung am Ende der Laktation mit jener am Höhepunkt der Laktation

Zuchtwert Persistenz

- Milchleistung (ML) am Ende der Laktation:
 - ZW ML Tag 280 = Ø ZW ML Tag 255 bis 305
- Milchleistung Laktationshöhepunkt
 - ZW ML Tag 60 = Ø ML Tag 50 bis 70
- Differenz Ende Laktation Laktationshöhepunkt wird berechnet
- Gewichtung: 1., 2. und 3.ff Laktation je 1/3
- Standardisierung 100/12

Gesamtzuchtwert Milchwert Fitnesswert


Dieses Kapitel wird genau in 751-6502-00 Ruminant Science 751-6502-00 bei Stefan Neuenschwander besprochen.

Zuchtzieldefinition

- Zuchtzieldefinition nach Fewson (1993):
- "Erstellung von vitalen Tieren, welche unter zukünftigen Rahmenbedingungen einen höchst möglichen Gewinn sicherstellen"
- Zuchtziel muss neben Produktionsmerkmalen auch funktionale Merkmale wie Fitness und Gesundheit enthalten.
- Ökonomische Gesamtzuchtwert (GZW)
 - Ist die mathematische Definition des Zuchtzieles
 - Im GZW werden Merkmale gemäss ihrer wirtschaftlichen Bedeutung kombiniert.

المنسنات العالم

Gesamtzuchtwerte weltweit

Qualitas AG

Birgit Gredler-Grandl

Angewandte Zuchtwertschätzung

4. April 2016

Gesamtzuchtwert Braunvieh

			Merkmal	GZW Original Braunvieh %		
Merkmal	GZW BV %		Mkg	8		
Mkg	10		EWkg	17	Milch 30	
EWkg	27	Milch 45	EW%	5	00	
EW%	8	43	Fleisch	20	Fleisch 20	
Fundament	3	Exterieur	Becken	5	-	
Euter	10	13	Fundament	4	Exterieur 15	
Persistenz	4		Euter	6	10	
Nutzungsdau	10		Persistenz	3		
er		Fitness	Nutzungsdaue	10	Fitness	
Zellzahl	9	42	r		35	
Fruchtbarkeit	15		Zellzahl	8	00	
Milchfluss	4		Fruchtbarkeit	14		

Gesamtzuchtwert Weide Braunvieh WZW

Merkmal	WZW %			
Mkg	10			
EWkg	22	Milch 40		
EW%	8	40		
Fundament	4	Exterieur		
Euter	6	10		
Persistenz	5			
Nutzungsdauer	5			
Zellzahl	6	Fitness 40		
Fruchtbarkeit	20	40		
Milchfluss	4			
Körpergewicht (KG)	10	KG 10		

- Hilfsmittel für die Zucht einer robusten Raufutterkuh mit einer hohen Milchproduktionseffizienz
- Anteil der Milchproduktion am gesamten Futterenergiebedarf einer Kuh inkl. Erhaltungsbedarf
- Bei gleicher Leistung ist die leichtere Kuh effizienter.
- Körpergewicht wird mittels ZW für Kreuzbeinhöhe, Körpertiefe und Beckenlänge geschätzt
- Körpergewicht im WZW negativ gewichtet

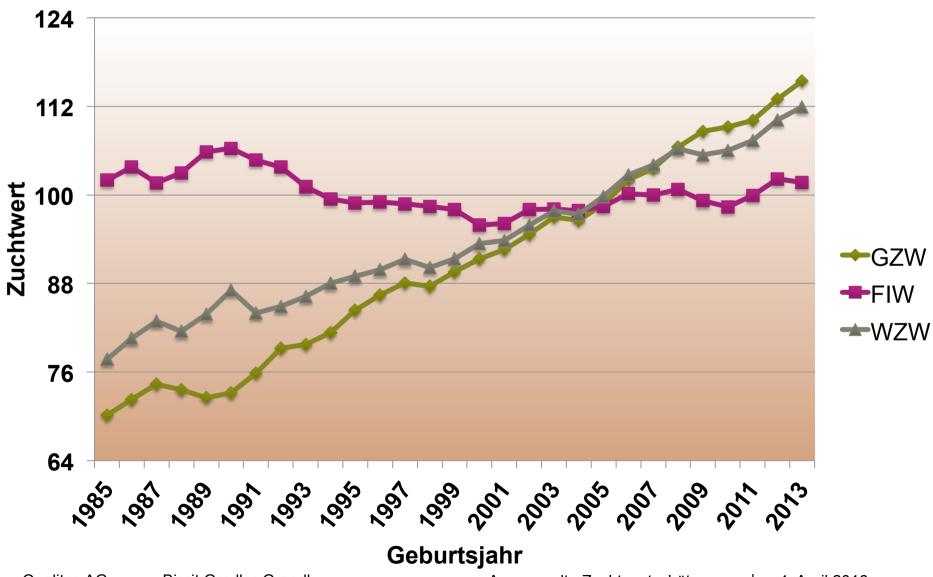
ETH zürich

Index Selektion Total Holstein und Swiss Fleckvieh

Standardisierung: 1000/120

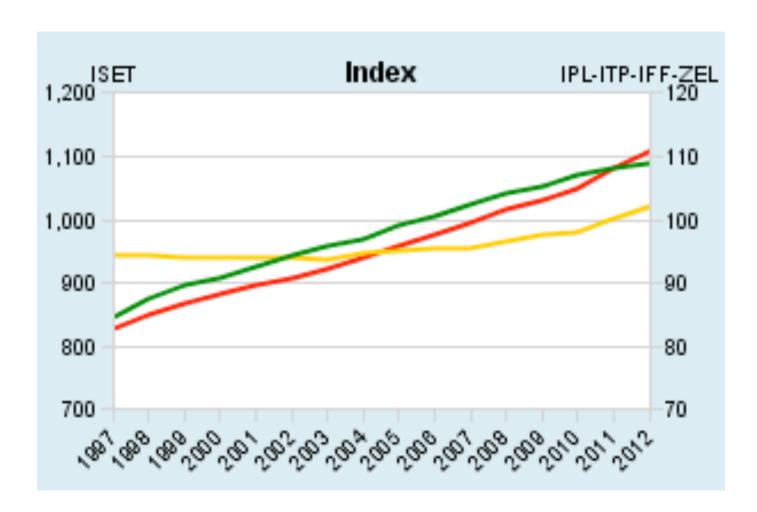
Merkmal	ISET Holstein		ISET Swiss	s Fleckvieh	
Fettkg	5	NAUL I	10	Milch	
EWkg	27	Milch 40	20	40	
EW%	8	40	10		
Fundament	8	Exterieur	10	Exterieur	
Euter	12	20	7.5	20	
Zitzen			2.5		
Persistenz	4	Fitness	4	Fitness	
Zellzahl	10	40	6	35	
Nutzungsdauer	8		5		
Fruchtbarkeit	18		20		
Körpergewicht (KG)			5	KG 5	

Index Selektion Total Simmental

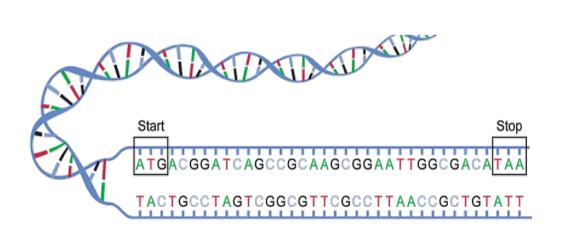

Standardisierung: 1000/120

Merkmal	ISET Simmental %				
Fettkg	6				
Fett%	3	Milch			
EWkg	16	35			
EW%	7				
Fleisch	20	Fleisch 20			
Zellzahl	5				
Nutzungsdauer	6				
Persistenz	4	Fitness			
Fruchtbarkeit	7	28			
Milchfluss	3				
Normalgeburten	3				
Fundament	5				
Gesamtnote	15	Exterieur 20			

Teilzuchtwerte

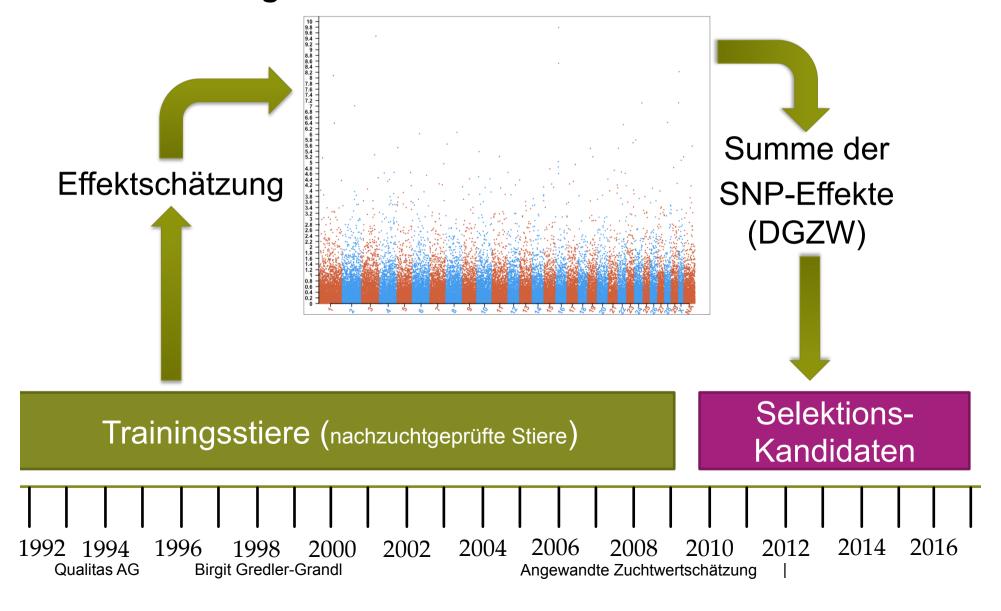

- Braunvieh
- Milchwert: 25% Milchmenge, 60% Eiweissmenge, 15% Eiweissgehalt
- Fitnesswert: 13% Persistenz, 28% Nutzungsdauer, 25% Zellzahl, 25%
 Fruchtbarkeit, 4% Milchfluss
- Holstein, Swss Fleckvieh, Simmental
- Index Produktion Leistung (IPL)
- Index Funktionalität und Fruchtbarkeit (IFF)

Genetischer Trend Braunvieh

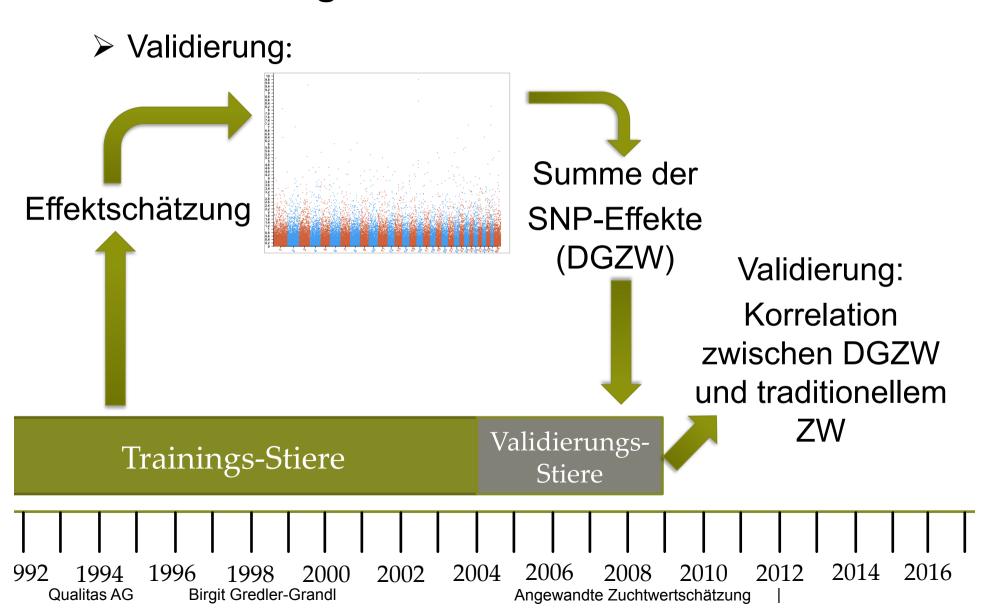


Genetischer Trend Holstein

Imputation und Genomische Zuchtwertschätzung



Genomische Zuchtwertschätzung


- 3 mal im Jahr erfolgt im Anschluss an die traditionelle Zuchtwertschätzung die SNP-Effektschätzung
- Modell BayesCπ (Bayes-Verfahren Schätzen von Effekten für jeden SNP)
- Nach Rassen getrennt:
 - Braunvieh (Internationale Zusammenarbeit InterGenomics)
 - Original Braunvieh (Brown Swiss Tiere werden nicht im Training verwendet)
 - Holstein, Swiss Fleckvieh, Simmental
 - Simmental bis jetzt noch keine genomischen Zuchtwerte
 - Holstein: Schweiz Partner Nordamerikanisches Konsortium zum Genotypenaustausch

ETHzürich Effektschätzung

Die Schätzung von SNP-Effekten

Sicherheit B% genomischer ZW

Zuchtwert Begriffe

- Zuchtwert (ZW): "konventionell, traditionell" geschätzter Zuchtwert ohne Einbezug von Markerinformation
- Direkter genomischer Zuchtwert (DGZW): Zuchtwert geschätzt allein aufgrund von Markerinformationen
- Genomisch optimierter Zuchtwert (GOZW): Zuchtwert geschätzt auf Grund von traditionellen Daten und Markerinformationen (Kombination von ZW und DGZW).

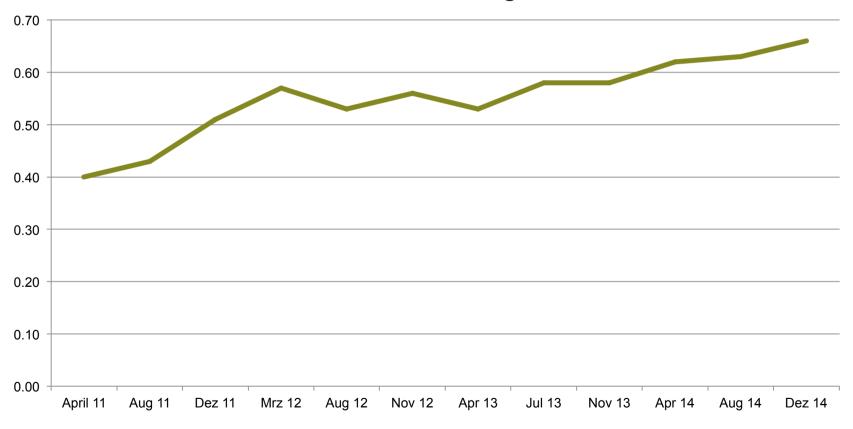
			Deklaration GOZW	Tiergruppe
Abstammungs-ZW			GA	Jungtiere
CH-Zuchtwert	+ DGZW	DGZW	G	Kühe, Stiere
Interbull-Zuchtwert			GI	Stiere

TH zürich

Kombination von traditionellen und genomischen Zuchtwerten Genomisch-optimierte Zuchtwerte GOZW

- GOZW = (a * ZW + b * DGZW) / (a + b)
- a = B% ZW / (1 B% ZW)
- b = B% DGZW / (1 B% DGZW)

(b * B% DGZW + a * B% ZW)²


B% GOZW =
$$\frac{}{}$$

b² * B% DGZW + a² * B% ZW + B% ZW * 2 * b * a * B% DGZW

Genauigkeit der genomischen ZWS

Anzahl Trainingsstiere (Bsp. BV)

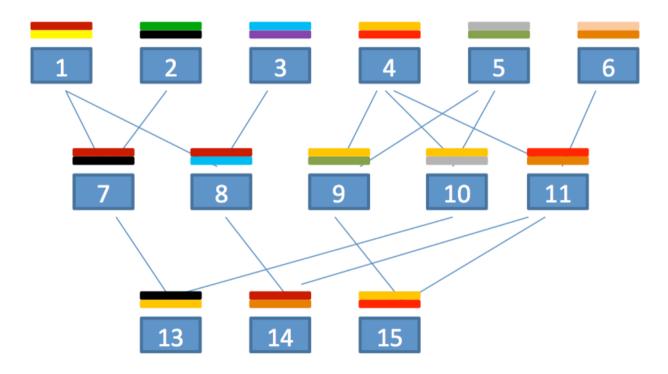
Genauigkeit der genomischen ZWS

r	HOL (SHZV)	RH (SHB)	SF	SIM	BV	ОВ
Mkg	0.64	0.45	0.36	0.28	0.66	0.62
Fkg	0.47	0.45	0.74	0.33	0.59	0.59
Ekg	0.55	0.46	0.52	0.37	0.63	0.57
PER	0.18	0.21	0.22	0.41	0.39	0.18
ZZ	0.44	0.46	0.49	0.49	0.54	0.46
FOR/ RAH	0.33	0.28			0.41	0.23
KbH	0.58	0.29			0.69	0.36
EUT	0.56	0.24		0.29	0.66	0.35
ETi	0.47	0.34	0.48	0.46	0.57	0.35

Qualitas AG

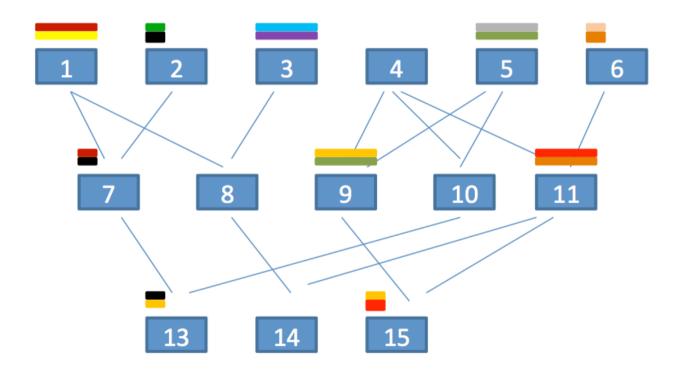
Imputation

- Imputation bezeichnet die Vorhersage von (fehlenden)
 Genotypen
- Gründe für fehlende Genotypen:
 - Fehlerhafte Genotypisierung (Call Rate z.B. 97%, 3% der SNP wurden nicht genotypisiert)
 - Unterschiedliche SNP Chips


Imputation – verschiedene SNP-Chips

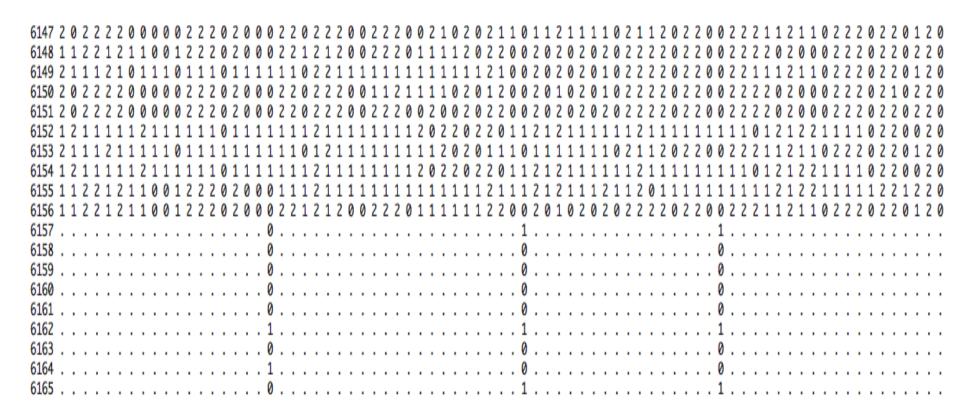
- Standard: Illumina Bovine50k-Chip (54'000, 150'000 SNP)
- Alternativen: Illumina BovineLD Chip (7'000, 19'000 SNP)
 Illumina BovineHD-Chip (777'000 SNP)

. . . .


- LD-Chip: Dank tieferem Preis mehr Tiere typisieren Genotypisierung von Kühen
- HD-Chip: rassenübergreifende Effektschätzung, Forschung

Idee Imputation

- Pedigree mit vorkommenden Haplotypen in der Population
- Jedes Tier trägt je einen väterlichen und mütterlichen Haplotypen


Idee Imputation

Einige Tiere sind

- 50k-genotpyisiert (1, 3, 5, 9, 11)
- LD-genotypisiert (2, 6, 7, 13, 15)
- Gar nicht genotypisiert (4, 8, 10, 14)

Beispiel: Typisierung mit 50k Chip und LD Chip

Imputieren der fehlenden Genotypen vom LD auf 50k Chip

Imputationsmethoden

Familienimputation

- Folgt den Regeln der Mendelschen Vererbungslehre
- Nutzt Information von verwandten Tieren (z.B. Vater und Mutter sind 50k genotypisiert)
- Sehr gut, wenn viele nahe verwandte des LD-Kandidaten 50k genotypisiert sind

Populationsimputation

- Nutzt Kopplungsungleichgewicht in der Population (Korrelation zwischen benachbarten SNP in der Population)
- Nützlich, wenn keine direkten Vorfahren eines LD-Kandidaten genotypisiert sind
- Viele Programme kombinieren beide Ansätze

Genauigkeit der Imputation

Daten: 3'738 mit 50k typisierte BV-Tiere

Annahme: die 723 jüngsten Tiere sind mit LD Chip typisiert

Frage: wie gut können die fehlenden SNP geschätzt werden?

	durchschn. % korrekt	durchschn. % inkorrekt	durchschn. Korrelation imputiert- wahr
Beide Eltern	98,6	1,4	0,98
Vater + MGV	98,1	1,9	0,97
Vater	97,6	2,4	0,96
Andere	97,3	2,7	0,95

Imputation in der Routine

- 2 mal im Monat werden Proben zur Genotypisierung ins Labor nach Amerika geschickt (1. Di volle Woche)
- Normalerweise wird mit LD-Chip typisiert
- Ergebnis kommt nach 14 Tagen retour
- 2 mal im Monat wird imputiert (alle genotypisierten Tiere werden dazu verwendet)
- Anschliessend werden die direkt genomische Zuchtwerte berechnet
- Kombination von traditionellen und genomischen Zuchtwerten
- Rückmeldung der GOZW an den Züchter

Exterieur

1	CHZW	DGZW	GOZW (GA)	Gesamtnote	GOZV	1		-	 •		116
GZW			134	Rahmen	111			<u> </u>	•		114
				Becken	100						97
WZW			115	Fundament	108			<u> </u>			108
				Euter	122			<u> </u>			127
FIW			88	Kreuzbeinhoehe	121	klein				gross	127
				Flankentiefe	104	wenig		-		viel	101
FW				Brustbreite	106	schmal		-		breit	104
				Obere Linie	99	gesenkt		-		erhoeht	100
MIVV	128	132	130	Beckenlaenge	104	kurz		-	1 1	long	103
				Beckenbreite	106	schmal		-		breit	107
Milch kg	998	1130	1088	Beckenneigung	89	gestellt				abgezog	82
				Lage Umdreher	88	hinten				vorne	82
Fett kg	38	36	37	Sprunggelenkwinkel	79	gerade	i —		Ti	saebelbei	
		2000		Sprungg.Auspr.	93	voll		_		trocken	89
Fett %	-0.03	-0.12	-0.09	Fessel	117	weich			∔ ,	steil	118
200 0 00		10.0	12	Klauensatz	106	flach			. 1	hoch	111
Eiweiss kg	37	42	40	Voreuterlaenge	105	wenig		-		viel	106
	201			Voreuteraufhaengung	113	looker			4 1	stroff	114
Eiweiss %	0.04	0.04	0.04	Aufh, hi Breite	100	schmal				breit	97
Zelizahl	114	119	117	Aufh, hi Hoehe	112	tief		_	-	hoch	113
Zerizarii	114	110	111	Eutertiefe	114	tief		<u> </u>	+•	hoch	117
Persistenz	102	102	102	Euterboden	105	gestuft		-		angehob	106
Persistenz	102	102	102	Zentralband	96	n.vorh.		•		l.gesp.	94
Fruchtbarkeit		72	79	Zitzenlaenge	97	kurz				lang	96
Flucitoanteit		12	15	Zitzendicke	88	fein		-	1 1	grob	84
Nutzungsdauer		101	104	Zitzenstellung	111	n.aussen				n,innen	114
140 Zuriga Gader		101	104	Verteilung vo	95	weit		-		eng	99
Melkbarkeit		106	106	Verteilung hi	101	weit				eng	102
		14 Mrz 2016		Bemuskelung	94	leer				voll	90
						1 2 2 2 2					
					40	60	80	100	120	140	160

Aktuelle Projekte

- Gesundheitsdatenerfassung Entwicklung einer Zuchtwertschätzung für Gesundheitsmerkmale
- Neue Merkmale: Effizienz Futteraufnahme –
 Methanemission Energiebilanz Stoffwechselstabilität
- Nutzung von Mid-Infrarot-Spektraldaten für die Zucht
- Entwicklung einer genomischen Zuchtwertschätzung mit Hilfe von Sequenzdaten (15 Millionen SNPs)
- · ...

Zuchtwertschätzung Milchschaf und Milchziege

Inhalt von Beat Bapst, Qualitas AG

Allgemeines

- Im Auftrag des Schweizerischen Ziegenzuchtverbandes und Schweizerische Milchschafzucht Genossenschaft
- Schaf: Lacaune und Ostfriesisches Milchschaf
- Ziege: Saanenziege, Toggenburgerziege und Gämsfarbige Gebirgsziege
- 2 x pro Jahr für Schafe (Anfang Jan. und Anfang Juli)
- 1 x pro Jahr für Ziegen (Anfang Februar)
- Schafe: seit 2015
- Ziegen: seit 2010

Merkmale

- Milch kg 100 -Tage Leistung
- Fett % 100-Tage Leistung
- Eiweiss % 100-Tage Leistung
- Milch kg Standardlaktation (Ziege: 220 Tage, Schaf 200 Tage)
- Fett % Standardlaktation (Ziege: 220 Tage, Schaf 200 Tage)
- Eiweiss % Standardlaktation (Ziege: 220 Tage, Schaf 200 Tage)

Umsetzung

ZW wird für die einzelnen Rassen separat geschätzt

- Es wird ein Zuchtwert je Merkmal ausgewiesen:
 100-Tage Leistung und 200/220-Tage Leistung werden zusammengefasst
- Lacaune: Milchwert: 50% EW%, 30% F%, 20% Mkg
- Standardisierung 100/10
- Basis: 4- bis 6-jährigen Schafe/Ziegen mit mindestens einem 100-Tage Abschluss
- Publikationsbedingung:
 - Böcke: mind. 8 Töchter mit jeweils mind. 1 100-Tage Leistung in ZWS
 - Auen/Ziegen: mind. 1 100-Tage Leistung (Eigenleistung)

Daten ZWS Januar 2016

	Lacaune	Ostfriesisches Milchschaf
N Schafe im Pedigree	13'354	19'998
N Böcke im Pedigree	6'242	7'877
N Schafe Publikationsbedingung	3'801	1'972
N Böcke Publikationsbedingung	82	71
N Laktationen 100-Tage	11'112	5'857
N Laktationen 200-Tage	8'394	4'564

Daten ZWS Februar 2016

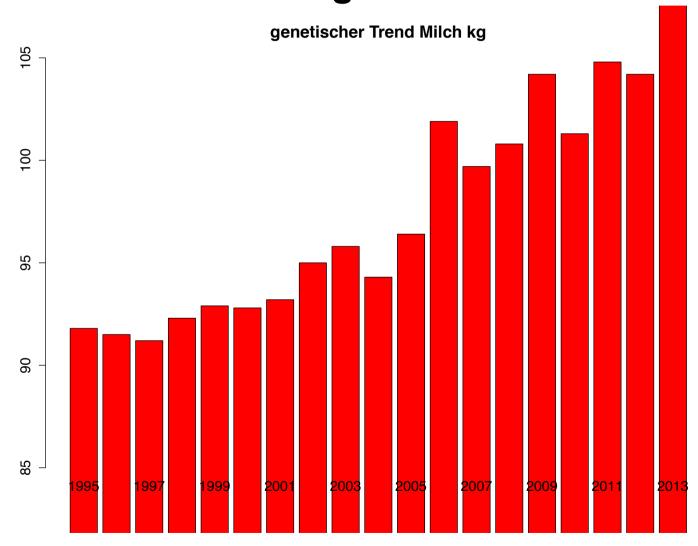
	Saanenziege	Toggenburgerz.	Gämsfarbige Gebirgsziege
N Ziegen im Pedigree	83'909	39'575	86'784
N Böcke im Pedigree	42'575	17'998	41'771
N Böcke Publ.bedingung	1'366	625	1'329
N Ziegen Publ.bedingung	21'727	8436	21'538
N Töchterlakt. je Bock	42.26	35.14	44.12
N Laktationen je Ziege	2.85	2.78	2.91

Modell

- BLUP Mehrmerkmals-Tiermodell
- Wiederholbarkeitsmodell (2ff Laktation werden als wiederholte Leistung angesehen)

Effekte	Тур
Laktationsnummer	fix
Ablamm-Jahr-Monat	fix
Betrieb*Zeitperiode	zufällig
Permanenter Umwelteffekt	zufällig
Additive genetischer Tiereffekt	zufällig
Resteffekt	zufällig

Genetischen Parameter – h² und r_g Lacaune und Ostfriesisches Milchschaf


Merkmal	Mkg 100	F% 100	EW% 100	Mkg 200	F% 200	EW% 200
Mkg 100	0.19					
F% 100	-0.61	0.33				
EW% 100	-0.51	0.64	0.50			
Mkg 200	0.94	-0.46	-0.42	0.22		
F% 200	-0.62	0.99	0.67	-0.47	0.38	
EW% 200	-0.49	0.63	0.99	-0.41	0.65	0.52

Genetischen Parameter – h^2 und r_g Gämsfarbige Gebirgsziege, Saanenziege, Toggenburgerziege

Merkmal	Mkg 100	F% 100	EW% 100	Mkg 220	F% 220	EW% 220
Mkg 100	0.14 0.17 0.18					
F% 100	-0.319 -0.221 -0.434	0.27 0.30 0.30				
EW % 100	-0.426 -0.353 -0.347	0.660 0.624 0.709	0.25 0.26 0.43			
Mkg 220	0.963 0.966 0.927	-0.330 -0.184 -0.287	-0.396 -0.310 -0.282	0.13 0.18 0.14		
F% 220	-0.295 -0.283 -0.422	0.970 0.973 0.970	0.653 0.638 0.717	-0.313 -0.260 -0.282	0.48 0.42 0.38	
EW 220	-0.398 -0.338 -0.329	0.662 0.600 0.694	0.989 0.983 0.972	-0.390 -0.313 -0.271	0.671 0.634 0.703	0.46 0.42 0.56

Genetischer Trend Mkg Lacaune

Qualitas AG

Birgit Gredler-Grandl

Angewandte Zuchtwertschätzung