ETH zürich

Grundlagen Molekulargenetik

Birgit Gredler-Grandl

Qualitas AG Birgit Gredler-Grandl Folien ZL I+II LFW C11 | 20. Nov. 2015

Termine und Inhaltsübersicht

	06. Nov. 2015 13. Nov. 2015	VCE, BLUP-Zuchtwertschätzung BLUP-Zuchtwertschätzung
	13. NOV. 2013	blur-zuchwertschatzung
	20. Nov. 2015	Grundlagen Molekulargenetik
•	27. Nov. 2015	QTL-Mapping und Genomweite Assoziationsstudien
•	04. Dez. 2015	Genomweite Assoziationsstudien und Genomische Selektion
	11. Dez. 2015	Genomische Selektion
	18. Dez. 2015	Prüfung

Heutige Vorlesung

- Grundbegriffe
- Merkmalstypen und Modelle der phänotypischen Ausprägung
- Quantitative Trait Locus (QTL)
- Was sind Genetische Marker?
- Was ist QTL-Mapping?
- Kopplung und Kopplungsungleichgewicht

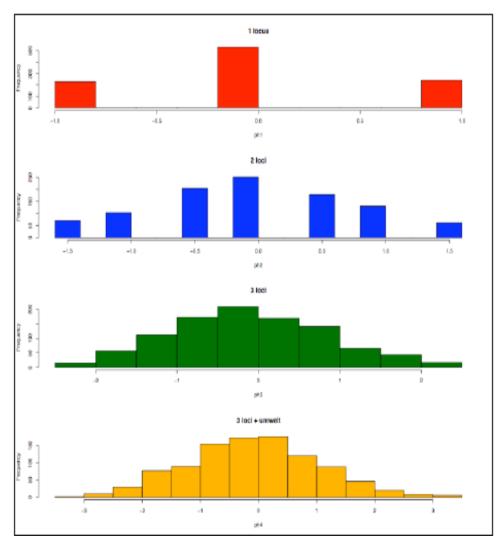
 Danksagung: Ideen, Konzepte, Folien von Marlies Dolezal, Hermann Schwarzenbacher, Urs Schuler, Beat Bapst

Ein paar wichtige Begriffe zur Wiederholung ...

- GENOM: Gesamtheit der Erbinformation eines Individuums im Zellkern (diploid 2n, haploid n), zum Teil auch in den Mitochondrien. Summe der Gene eines Individuums.
- GEN: Funktionseinheit der Vererbung. Eine DNA-Sequenz auf einem Chromosom, welche für Protein kodiert (Gregor Mendel sprach noch von "Erbfaktoren")
- LOCUS: Ort eines Gens auf dem Chromosom (gibt die Position auf dem Chromosom an).
- ALLEL: Genvariante (Zustandsform) an einem Locus (verschiedene Genvarianten können auftreten: Allele auf väterl. und mütterl. Chromosom können identisch oder verschieden sein → AA, Aa, aa)
- GENOTYP: Kombination der Allele an einem Genort (Def. im engeren Sinn) oder an allen Genorten (Def. im weiteren Sinn)

ETH zürich

Unterschiedliche genetische Architektur


Monogene Merkmale

- Werden von 1 Gen beeinflusst
- Diskrete Verteilung
- "Mendelmerkmale" (Mendelsche Regeln)

Polygene Merkmale

Quantitative Merkmale

- Sehr grosse Anzahl (gegen unendlich) an Genen, jedes mit sehr kleinem Effekt
- Einfluss von Umwelt
- Kontinuierliche Verteilung

5

Verschiedene Merkmalstypen

Diskrete, qualitative Merkmale

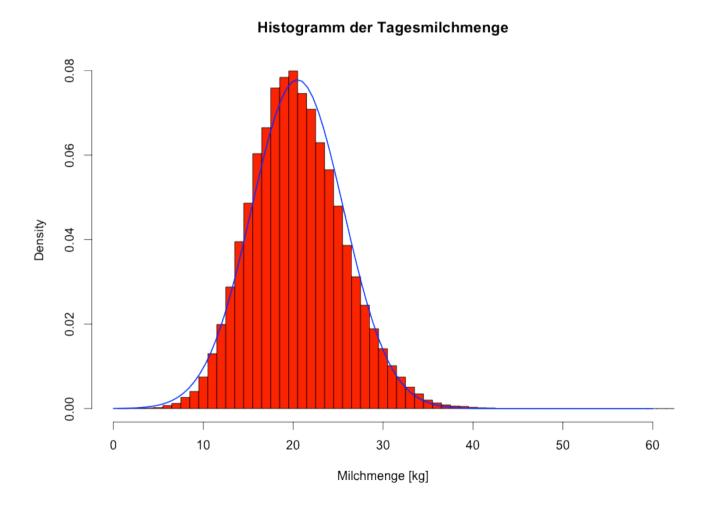
Quantitative Merkmale

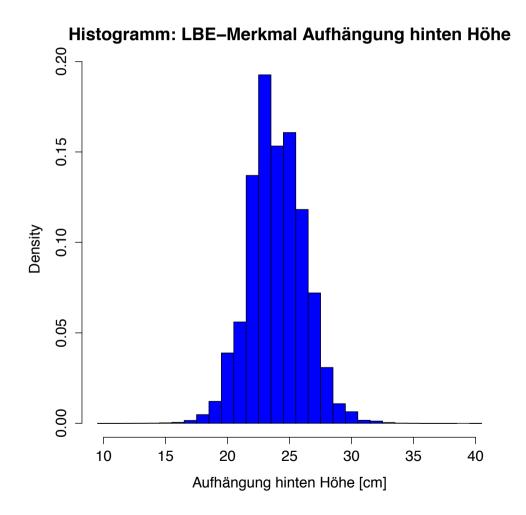
Qualitas AG

Verschiedene Merkmalstypen

Diskrete, qualitative Merkmale

- Es können klar unterscheidbare Kategorien beobachtet werden
- Vererbung folgt oft den Mendelschen Regeln
- Merkmal wird von einem Gen beeinflusst

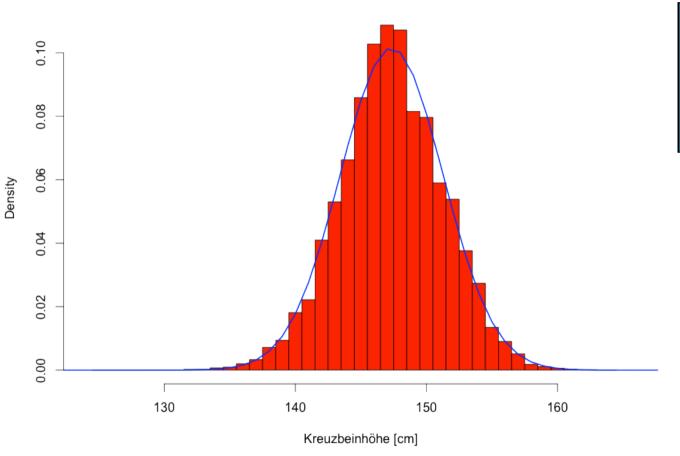

Quantitative Merkmale

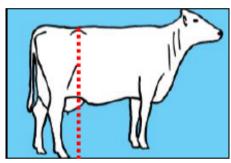



- Merkmale die einer kontinuierlichen Verteilung folgen
- In der Zucht sind wir hauptsächlich an solchen Merkmalen interessiert
- Meist von sehr vielen Genen beeinflusst

Quantitative Merkmale – kontinuierliche Verteilung

Quantitative Merkmale – kontinuierliche Verteilung





Distanz zwischen Scheide und dem höchsten Punkt bei der äussersten Euterfalte.

Quantitative Merkmale – kontinuierliche Verteilung

Histogramm der Kreuzbeinhöhe

Qualitas AG

Birgit Gredler-Grandl

Folien ZL I+II LFW C11 | 20. Nov. 2015

Quantitative (komplexe) Merkmale

- Phänotyp zeigt kontinuierliche (Gausssche) Verteilung
- Vererbung wird durch die Allele an sehr vielen Genorten bestimmt
- Sehr grosse Anzahl (bis unendliche Anzahl) an Genen beteiligt
- → polygener Erbgang
- Von Umwelt beeinflusst

$$P = G + U$$

- Synonym "komplexe Merkmale" ("complex traits")
- Viele wirtschaftlich bedeutende Merkmale in der Tierzucht

Zwei Modelle zur Erklärung der genetischen Architektur von Merkmalen

Infinitesimale Modell (infinitesimal model) Endliche Anzahl an Loci (finite loci model)

Qualitas AG Birgit Gredler-Grandl Folien ZL I+II LFW C11 | 20. Nov. 2015 12

Infinitesimale Modell

- Ronald Aylmer Fisher (1918)
- Ausprägung eines Merkmals ist bestimmt durch:
 - Theoretisch unendliche Anzahl von ungekoppelten Loci
 - Jeder Locus hat unendlich kleinen Effekt
 - Jeder Effekt wirkt additiv → additive Genwirkung
- Modell der Leistung

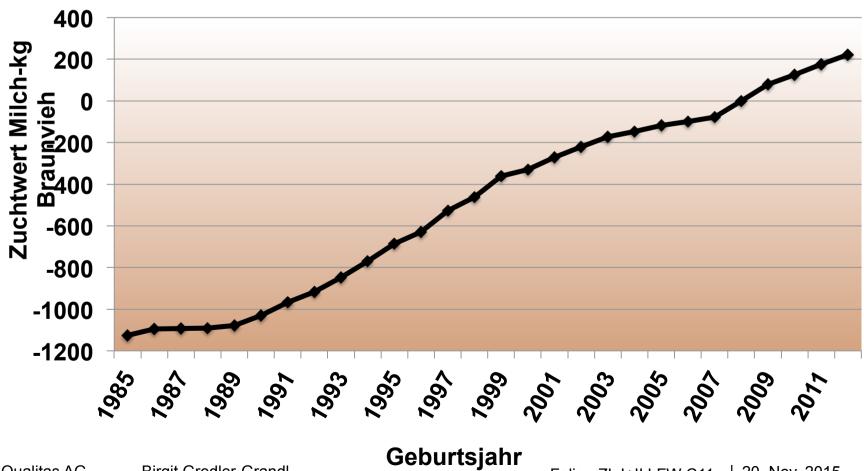
$$P = G + U$$

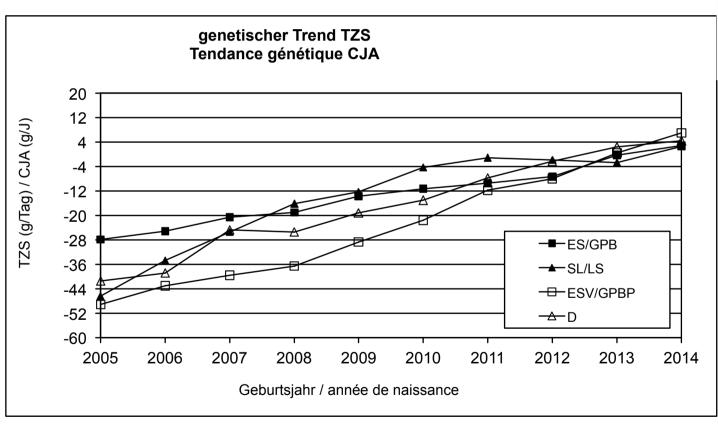
Sir Ronald Fisher (1890 – 1962) wikipedia.org

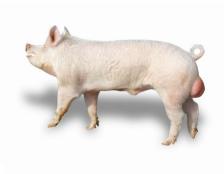
Infinitesimale Modell

- Sehr starke Vereinfachung der Wirklichkeit
- Rein operatives Modell, das die Grundlage der Tierzucht und Pflanzenzucht bildet

- Entspricht nicht der Wahrheit!
- ABER sehr erfolgreich!



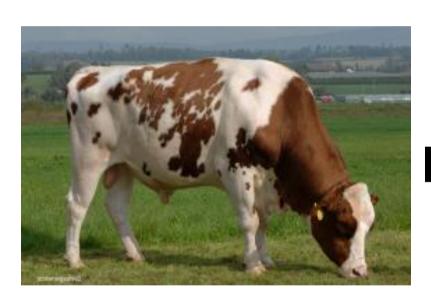

Sir Ronald Fisher (1890 – 1962) wikipedia.org

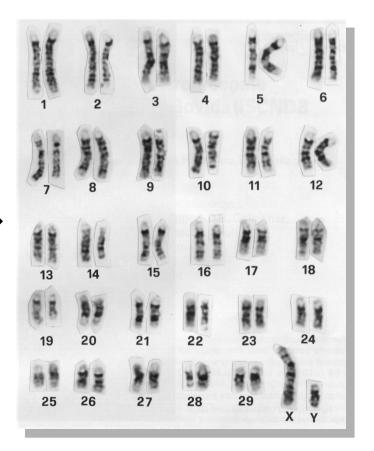

Genetischer Trend

Entwicklung der durchschnittlichen geschätzten Zuchtwerte pro Geburtsjahrgang

Genetischer Trend Schweinezucht

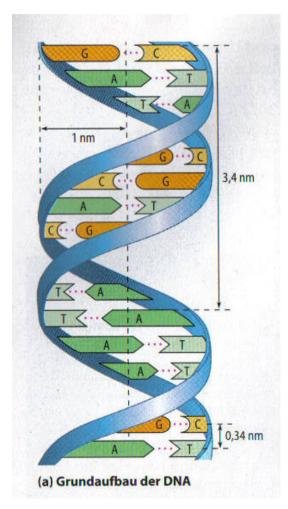
Suisag, 2015


Zwei Modelle zur Erklärung der genetischen Architektur von Merkmalen


Endliche Anzahl an Loci (finite loci model)

Qualitas AG Birgit Gredler-Grandl Folien ZL I+II LFW C11 | 20. Nov. 2015 17

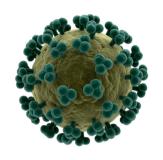
Finite loci model



Birgit Gredler-Grandl

Finite loci model

aus: Campbell und Reece. Biologie


Wasserstoffbrücke (b)) einige Strukturdetails

Adenin ←→ Thymin

Cytosin ←→ Guanin

Finite loci model – Genome sind endlich

HIV Virus: 9'700 Basen

E. Coli: 4'600'000 Basen

Huhn: 78 Chr. 1'000'000'000

Basen

Maus: 40 Chr. 2'500'000'000 Basen

Rind: 60 Chr. 2'670'000'000

Basen

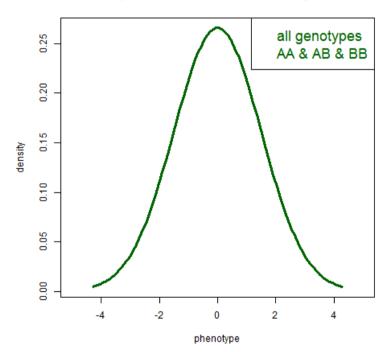
http://www.ncbi.nlm.nih.gov/genome Birgit Gredler-Grandl

Mensch: 46 Chr. 3'000'000'000 Basen

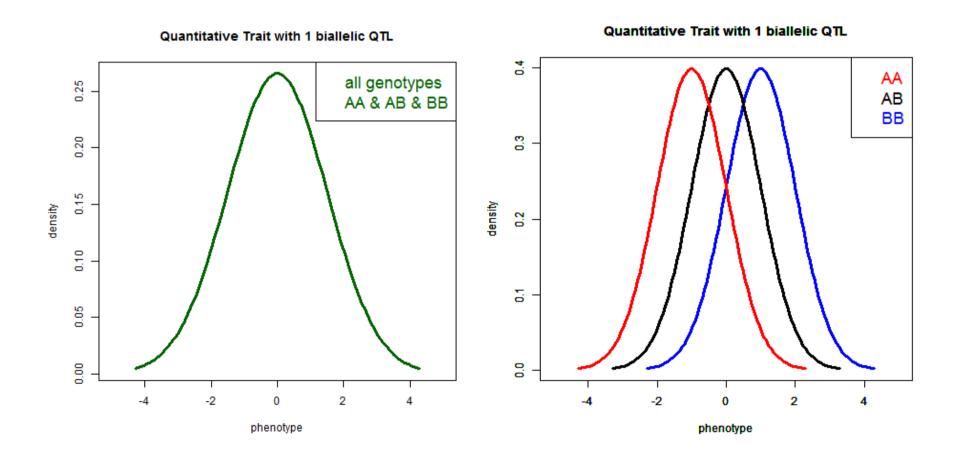
Finite loci model

- Genome haben endliche Grösse!
- ~23'000 Gene in Säugetiergenomen
- Modellannahmen:
 - Wenige Gene mit grossen Effekten auf die Ausprägung eines Merkmalss
 - Viele Gene mit kleinen Effekten auf die Ausprägung eines Merkmals

$$P = G + QTL + U$$


- P = Phänotyp
- G = Genotyp (additive Genwirkung)
- QTL = Quantitative Trait Locus
- U = Umwelt

Quantitative Trait Locus - QTL


- Molekulargenetische Methoden ermöglichen Auffinden von Loci, die einen messbaren Einfluss auf ein quantitatives Merkmal haben
- Solche Loci werden Quantitative Trait Loci (QTL) genannt (dt. Quantitativer Merkmalsgenort)
- Bezeichnet einen Locus (oder Chromosomenabschnitte mehrere Loci), dessen Varianten (QTL-Allele) unterschiedliche phänotypische Ausprägungen eines quantitativen Merkmals bewirken
- Gene an diesem Locus werden als Hauptgene (major genes) bezeichnet

Quantitative Trait Locus - QTL

Quantitative Trait with 1 biallelic QTL

Quantitative Trait Locus – Beispiel biallelischer QTL

Quantitative Trait Locus

Art	Merkmal	Gen
Schwein	Stress-Syndrom, Magerfleischanteil	MHS
Rind	Muskelhypertrophie (Doppellender)	Double muscling
Geflügel	Körpergrösse	Dwarf

Wieviele QTL gibt es?

QTLdb: www.animalgenome.org (Stand: 16.11.2015)

Rind: 36'693 QTLs, aus 623

Studien, für 486 Merkmale

Top 15 QTL/associations

Traits	Number of QTL
Milk fat percentage	1,922
Milk protein percentage	1,298
Calving ease	1,145
Somatic cell score	1,018
Milk fat yield	1,000
Rear leg set	986
Net merit	979
Milk protein yield	974
Length of productive life	867
Milk C14 index	837
Stillbirth	792
Calving ease (maternal)	770
Udder depth	761
Udder attachment	746
Foot angle	720

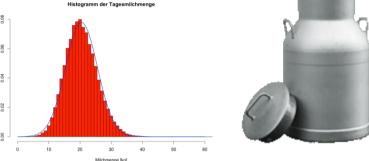
Schwein: 13'958 QTLs, aus 500

Studien, für 657 Merkmale

Top 15 QTL/associations

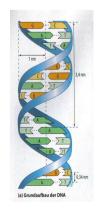
Traits	Number of QTL
Drip loss	1,059
Average daily gain	331
Loin muscle area	278
Average backfat thickness	247
Mean corpuscular volume	240
Hematocrit	238
Red blood cell count	227
Intramuscular fat content	213
Age at puberty	210
Backfat at last rib	206
Shear force	183
LDL cholesterol	175
PH 24 hr post-mortem (loin)	171
Teat number	167
Backfat at rump	164

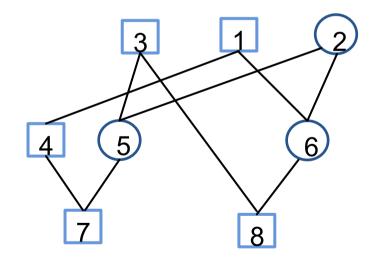
QTL mapping - Ziele

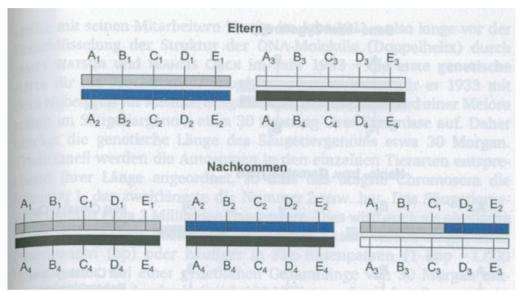

- Kartieren von QTL
- Auffinden der Regionen im Genom welche genetische Variation eines Merkmales verursachen
- Bestimmung der Position im Genom
- Schätzen des Effektes des QTLs (Grösse, Wirkungsweise)
- Was ist die Funktion?
- Wie ist die Allelfrequenz in der Population?
- Schätzen des Anteils der genetischen Varianz, die vom QTL erklärt wird

QTL mapping - Ziele

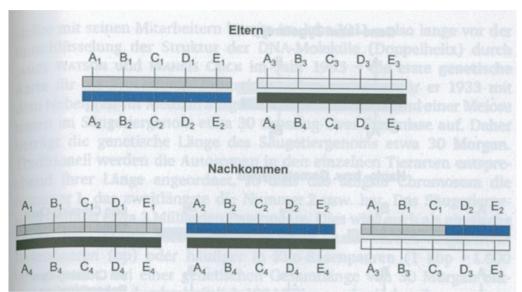
- Wissen über individuelle Genwirkungen und Wechselwirkungen zwischen Genen generieren
- Versuch, ein "mehr" der Realität entsprechendes Modell zur Erklärung der phänotypischen Varianz von quantitativen Merkmalen zu bilden
- Züchterische Nutzung: Verbesserung der Zuchtwertschätzung, Erhöhung des Zuchtfortschritts, Verringerung von Kosten im Zuchtprogramm (Markergestützte Selektion)


QTL mapping – welche Information wird benötigt?


Phänotypische Daten


Pedigree Information

Molekulare Information

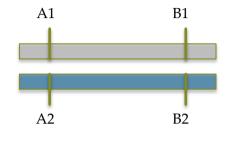


Genotyp versus Haplotyp

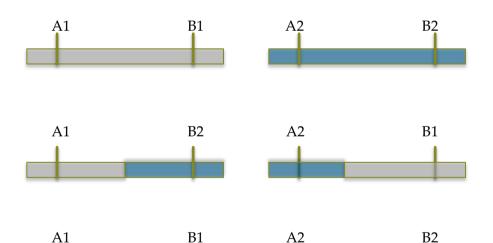
2 homologe Chromosomen mit 5 Loci mit je 4 versch. Allelen

Genotyp versus Haplotyp

2 homologe Chromosomen mit 5 Loci mit je 4 versch. Allelen


2 Nachkommen mit unveränderten Haplotypen, 1 Nachkomme mit Rekombination

Haplotyp:


- Abfolge von Allelen auf dem gleichen Chromosom
- Kombination von Allelen von verschiedenen Loci auf dem gleichen Chromosom, eng beieinander liegen und tendenziell gemeinsam vererbt werden

Nach Willam & Simianer, 2011

Crossing over / Rekombination

Genotyp

Kein Crossing over Keine Rekombination

Ein Crossing over Rekombination

Zwei Crossing over Keine Rekombination

Rekombination

- Rekombination ist nicht ein Fehler in der Meiose!!
- Sie ist wichtig für die Erzeugung neuer Allelkombinationen
- → Genetische Diversität!

Kopplung - Rekombination

- Kopplung: Loci auf dem selben Chromosom, welche gemeinsam vererbt werden, sind gekoppelt.
- Kopplung kann nur durch Crossing over aufgebrochen werden.
- Je näher die beiden Loci sind, desto grösser ist die Wahrscheinlichkeit für Kopplung.
- Je grösser die Distanz zwischen beiden Loci, desto grösser die Wahrscheinlichkeit für Rekombination.

Rekombinationsrate - r

Anzahl an rekombinanten Haplotypen Anzahl an rekombinanten und nicht-rekombinanten Haplotypen

Qualitas AG Birgit Gredler-Grandl Folien ZL I+II LFW C11 | 20. Nov. 2015 35

Genetische und physische Länge des Genoms

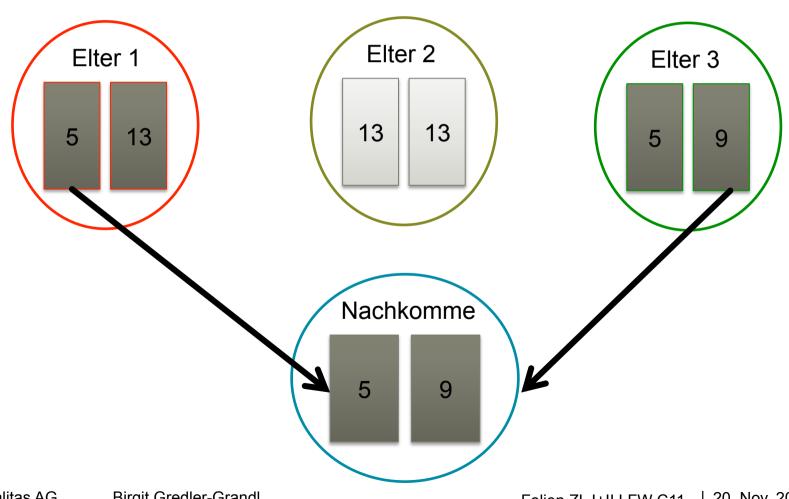
- Genetische Länge = Häufigkeit von Crossing Over auf einem definiertem Chromosomenabschnitt
- Einheit ist 1 Morgan (M) = 100 CentiMorgan (cM)
- Amerikanischer Genetiker Thomas Morgan
- Säugetiergenom etwa 30 Crossing Over je Meiose
- → Genetische Länge beträgt etwa 30 Morgan
- Physische Länge: Säugetiergenom 3 Mrd. Basen
- Angaben in Basenpaaren (bp) oder Kilo-Basenpaare (1kbp = 1000 bp)
- 1 cM ~10⁶ bp

Was sind Marker?

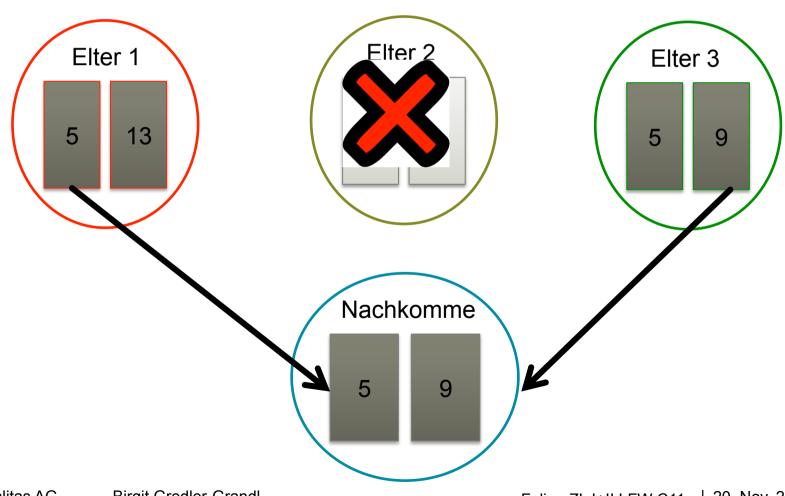
- Ist bekannt, dass es QTLs für ein Merkmal gibt, muss die Effektgrösse und die Lage des QTLs im Genom geklärt werden
- Im optimalen Fall kann der Genotyp vom QTL direkt ermittelt werden, meistens sind nur die Genotypen von gekoppelten Markern bestimmbar
- Marker sind Markierungen oder Hinweise für das Vorhandensein bestimmter QTLs, wenn sich Marker in räumlicher Nähe zum QTL befindet

Was sind phänotypische Marker?

- Phänotyp lässt Rückschlüsse auf den Genotyp zu
- Fellfarbe
- Hornlosigkeit
- Blutgruppe

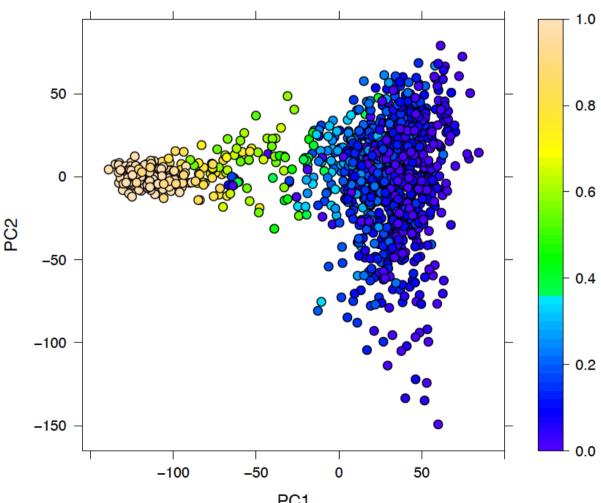

Was sind genetische Marker?

- Marker direkt auf Ebene der DNA
- Varianten der Basensequenz, welch sich mit molekulargenetischen Methoden darstellen lassen
- Marker haben festgelegte Position auf einem Chromosom Markerkarten vorhanden
- Es sollten möglichst viele Marker im Genom vorkommen
- Marker sollten hoch polymorph sein (viele verschiedene Varianten/ Allele in der Population)
- Technische Möglichkeiten müssen vorhanden sein, um Markerallele darzustellen – Genotypisierung
- Genotypisierungsergebnisse sollten eine geringe Fehlerrate aufweisen, kostengünstig sein und zw. Laboren vergleichbar sein


Nutzung genetischer Marker

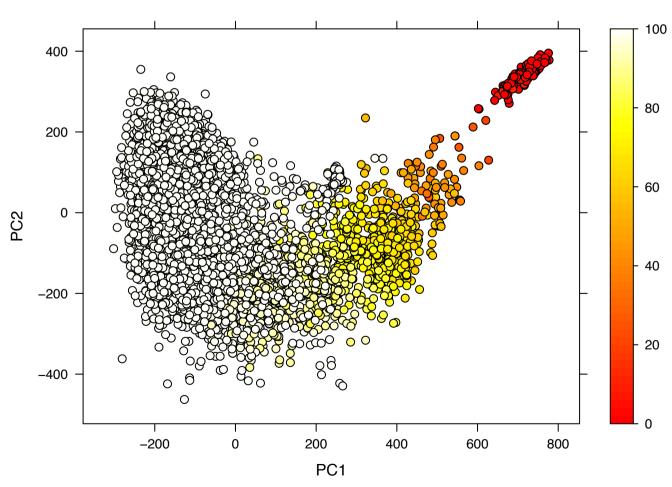
- Überprüfung der Abstammung Vaterschaftsnachweis
- Schätzung der genetischen Ähnlichkeit verschiedener Populationen (Rassen, Rassendifferenzierung)
- Nutzung in der Selektion: Einbeziehung von molekulargenetischer Information in die Zuchtwertschätzung
 - Markergestützte Selektion
 - Genomische Selektion

Nutzung genetischer Marker – Überprüfung der **Abstammung**



Nutzung genetischer Marker – Überprüfung der **Abstammung**

Nutzung genetischer Marker – Rassendifferenzierung


Populationsstruktur nach Original Braunvieh Genanteil

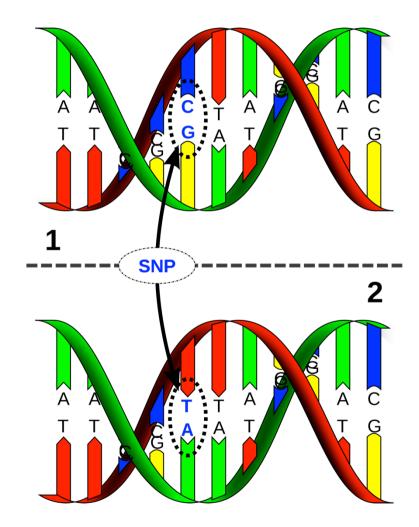
Qualitas AG PC1 Nov. 2015 43

Nutzung genetischer Marker – Rassendifferenzierung

Populationsstruktur nach HF-Genanteil

Genetische Marker - Mikrosatelliten

- Im Genom kommen an vielen Stellen sich wiederholende Basensequenzen vor
- Wiederholungen von immer gleichen Basensequenz
- Wiederholung kann mehr als 2 Basen umfassen
- Wiederholung von di-, tri-, tetra- oder penta-Nukleotiden
- Meist Wiederholungen von 2 Basenpaaren (ATATATAT; Tandemrepeats)


Genetische Marker - Mikrosatelliten

- Entstehung wahrscheinlich durch Kopierfehler bei der Zellteilung
- Allele von Mikrosatelliten-Marker unterscheiden sich durch die Anzahl Wiederholungen:
- Die Kombination CTT kann z.B. in 7, 8 und 9 Wiederholungen vorkommen
- Anwendung in der Tierzucht heute vor allem nur mehr in der Abstammungskontrolle

Qualitas AG

Single Nucleotide Polymorphism (SNP)sprich Snip

- Punktuelle Veränderungen einer Base in der DNA-Sequenz (Punktmutation)
- Base Cytosin wurde durch
 Base Thymin ersetzt
- SNP sind diallel treten nur in 2 Allel-Varianten auf
- 3 Genotypen: AA AT TT

http://en.wikipedia.org/wiki/File:Dna-SNP.svg

Single Nucleotide Polymorphism (SNP)sprich Snip

AACCAAGTGTCCG GAT CAGACCTCTCTGCGGCCCCAAGTGTTCGTGGTGCTTCCAGAGGCCAGGGCTATGCTCACATTCATGGCCTCT CCCAGAGGATGGAGAACACTGCCCAGTGGAGACCCAGGAGAACGAGGAGGACGGTGAGGAGGACCCTGACCGCTATGTCTGTAGTG GGGTTCCCGGGCGCCCCCCGGCCTGGAGGAAGAGCCTGAAATACGGAGCGAAGCACGTGATCATGCTGTTTGTGCCTGTCACT CTGTGCATGATCGTGGTGGTAGCCACCATCAAGT GCGCTTCTACACAGAGAAGAATGGACAAGCTCATCTACACGACATTCACTGA ${ t N}{ t G}{ t C}{ t C}{ t T}{ t C}{ t A}{ t C}{ t C}{ t T}{ t C}{ t A}{ t C}{ t C}{ t A}{ t T}{ t C}{ t A}{ t C}{ t G}{ t T}{ t C}{ t T}{ t}$ TGGTGGTGCTCTACAAGTA CGC GCTACAAGTTCATCCATGGCTGGTTGATCATGTCTTCACTGATGCTGCTGTTCCTCTTCACCTAT ATCTACCTTGGGGAAGTGCT GACCTACAATGTGGCCATGGACTACCCCACCCTCTTGCTGACTGTCTGGAACTTCGGGGCAGTGGG AGTACCTCCCAGAGTGGTCCGCGTGGGTCATCCTGGGCGCCATCTCTGTGTATGATCTCGTGGCTGTGCTGTGTCCCAAAGGGCCTCTG AGAATGCTGGTAGAAACTGCCCAGGAGAAATGAGCCCATATTCCCTGCCCTG_TAT_CTTATCTGCCATGGTGTGGACGGTTGGCAT GGCGAAGCTGGACCCCTCCTCAGGGTGCCCTCCAGCTCCCCTACGACCCGGAGAAGAAGACTCCTATGACAGTTTTGGGGAGC $\mathtt{CTCGGGGACTTCATC}$ $\mathtt{CTCTACAGTGTGCTGGTGGGCAAGGCGGAACCAAGTGTCCGGGATTCAGACCTCTCTGCGGCCCCAAGTGTTCG$ TGGTGCTTCCAGAGGCAGGGCTATGCTCACATTCATGGCCTCTGACAGCGAGGAAGAAGTGTGTGATGAGCGGACGTCCCTAATGTCGG GAGGAGGACGGTGAGGACCCTGACCGCTATGTCTGTAGTGGGGTTCCCGGGCGGCCGCCAGGCCTGGAGGAAC TACGGAGCGAAGCACGTGATCATGCTGTTTGTGCCTGTCACTCTGGCATGATCGTGGTGGTAGCCACCATCAAG<mark>C</mark>TGTBCGCTTCTACA ${\tt TCATCATGATCAGCGTCATCGTGGTTATGACCATCTTCTTGGTGGTGCTCTACAAGTACCGCTGCTACAAGTTCATCCATGGCTGGTTG$ CACCCTCTTGCTGACTGTCTGGAACTTCGGGGCAGTGGGCATGGTGTGCATCCACTGGAAGGGCCCTCTGGTGCTGCAGCAGGCCTACC

Birgit Gredler-Grandl Folien ZL I+II LFW C11 | 20. Nov. 2015 48

Single Nucleotide Polymorphism (SNP)sprich Snip

- Vorteile:
 - Sehr hohe Anzahl an SNPs im Genom vorhanden
 - Gut über das gesamte Genom verteilt
 - 1000 Bull Genomes Project (www.1000bullgenomes.com/)
 - > 1200 sequenzierte Rinde > 25 Millionen SNP
 - Gute Automatisierbarkeit
 - Kostengünstig
- Rasante Entwicklung von Typisierungsverfahren
 - Chip-Technologie: SNP-Chips
- Momentan wichtigste genetische Marker in der Tierzucht (Genomische Selektion)

SNP Chips

- Hersteller: Illumina und Affymetrix
- 1 Chip enthält:
 - SNPs verteilt über das gesamte Genom
 - Simultane Laboranalyse der X-Tausend SNP für das untersuchte Tier
- SNP Chips gibt es für viele Tierarten (Rind, Schwein, Schaf, Geflügel, ...:

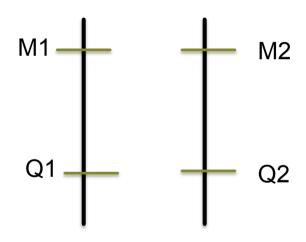
http://www.illumina.com/products/ggp-whole-genome- genotyping-arrays.html

SNP Chips

777.962 SNP

\$ 180

GGPLDv3 Chip 19.726 SNP \$ 43 BovineSNP50K 54.609 SNP \$ 90

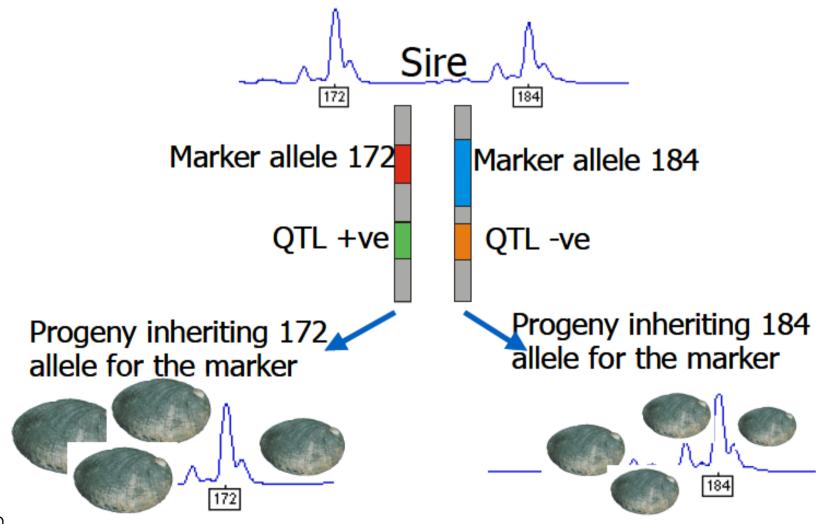

GGPHDv2 Chip 76.999 SNP \$ 90

Kriterien SNP Selektion für Chip:

- Gleichmässige Verteilung über das Genom
- Informationsgehalt (Frequenz, Funktionalität, polymorph in mögl. vielen Rassen, usw.)

Grundsätze QTL-Mapping

- Annahme: Marker und QTL sind in r\u00e4umlicher N\u00e4he und werden gemeinsam vererbt (Kopplung)
- Beispiel:
 - Kuh mit 2 Loci M und Q
 - Genotyp M1M2 und Q1Q2
 - Wird Allel M1 gehäuft mit Allel Q1 vererbt, sprechen wir von Kopplung



Väterlicher Mütterlicher Haplotyp Haplotyp

Grundsätze QTL-Mapping

- QTL und Marker sind gekoppelt → gemeinsam vererbt
- Genetische Marker ermöglichen es, die Vererbung von Segmenten im Genom von Eltern auf die Nachkommen zu verfolgen (Genotypisierung)
- → wir kennen das Markerallel (Genotyp), welches vererbt wurde
- Was wir **nicht** kennen: QTL Genotyp
- Wahrscheinlichkeit der möglichen QTL-Genotypen für ein Nachkommen können von Marker-Information berechnet werden
- Wenn ein Elter sowohl für Marker als auch QTL heterozygot ist, erwarten wir eine Differenz zwischen Nachkommengruppen zu sehen
- Nachkommengruppen: Jene Nachkommen, welche das eine QTL-Allele erhalten haben und jene, welche das andere QTL-Allel erhalten haben.

Grundsätze QTL-Mapping – ein Beispiel

Q 54

Kopplungsgleichgewicht und Kopplungsungleichgewicht

- Kopplungsgleichgewicht (*Linkage equilibrium*)
 - Zufällige Weitergabe von Allelen an 2 Loci
 - Zufällige Beziehung zwischen 2 Loci

- Kopplungsungleichgewicht (Linkage disequilibrium)
 - Nicht zufällige Beziehung/Weitergabe von Allelen an 2 Loci
 - Wichtige Voraussetzung für QTL-Mapping und Genomische Selektion

			Marker A	
		A1	A2	Häufigkeit
Marker B	B1			0.5
	B2			0.5
	Häufigkeit	0.5	0.5	

			Marker A	
		A1	A2	Häufigkeit
Marker B	B1	0.25	0.25	0.5
	B2	0.25	0.25	0.5
	Häufigkeit	0.5	0.5	

			Marker A	
		A1	A2	Häufigkeit
Marker B	B1	0.4	0.1	0.5
	B2	0.1	0.4	0.5
	Häufigkeit	0.5	0.5	

Abweichung von 0.25 bedeutet Kopplungsungleichgewicht!

			Marker A	
		A1	A2	Häufigkeit
	B1	0.4	0.1	0.5
Marker B	B2	0.1	0.4	0.5
	Häufigkeit	0.5	0.5	

Masszahlen:

■ D (Hill, 1981)

$$D = freq(A_1 B_1) * freq(A_2 B_2) - freq(A_1 B_2) * freq(A_2 B_1)$$

• r² (Hill and Roberston, 1968)

$$r^{2} = \frac{D^{2}}{freq(A_{1}) * freq(A_{2}) * freq(B_{1}) * freq(B_{2})}$$

Werte zwischen 0 und 1

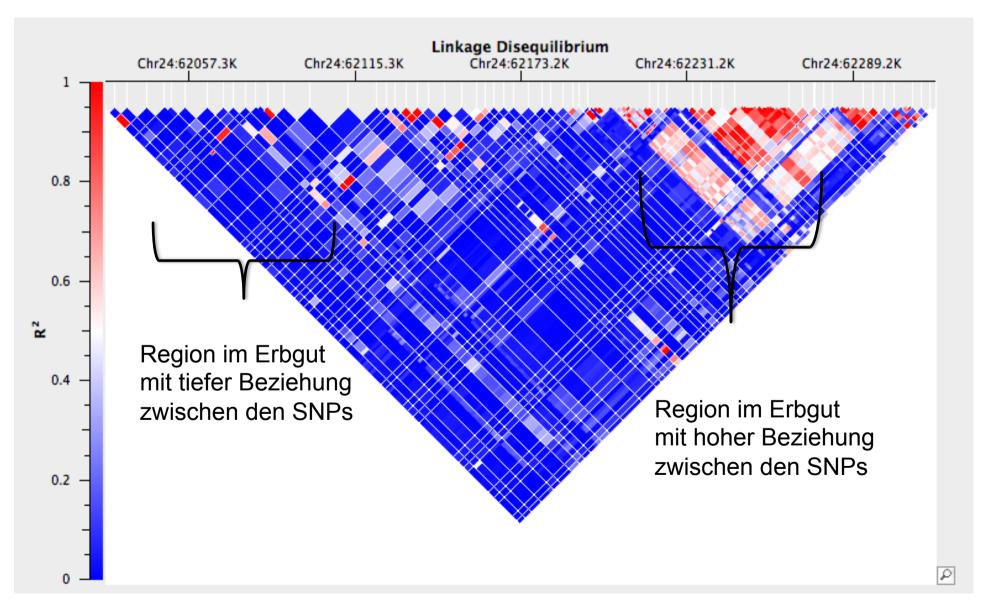
			Marker A	
		A1	A2	Häufigkeit
	B1	0.4	0.1	0.5
Marker B	B2	0.1	0.4	0.5
	Häufigkeit	0.5	0.5	

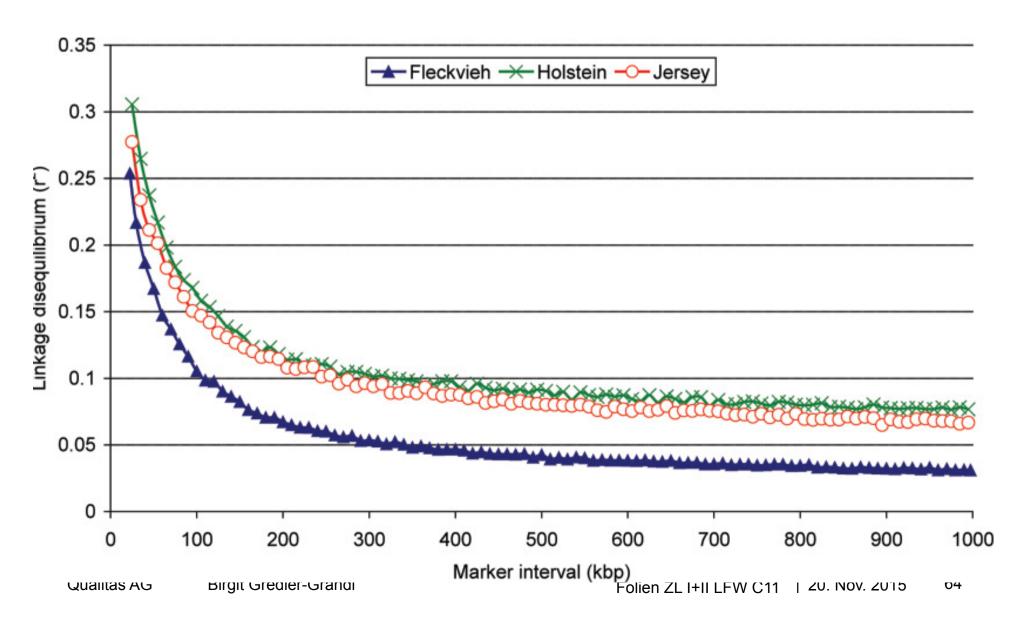
$$\blacksquare$$
 D = 0.15

•
$$r^2 = D^2/[freq(A1) * freq(A2) * freq(B1) * freq(B2)]$$

$$r^2 = 0.15^2/[0.5 * 0.5 * 0.5 * 0.5]$$

•
$$r^2 = 0.36$$


Kopplungsungleichgewicht eine Geschichte


- Im Dorf gibt es die junge Schönheit Michaela und vier junge Männer (Urs, Beat, Franz, Peter)
- Bei Festen sieht man Michaela jeweils mit einem von den jungen Männern; keiner wird bevorzugt – Michaela und die Männer sind im Kopplungsgleichgewicht
- Sieht man Michaela öfter mit Urs als mit den anderen dreien, dann sind Michaela und Urs im Kopplungsungleichgewicht

Kopplungsungleichgewicht eine Geschichte

- Gehen beide miteinander und man sieht Michaela nur noch mit Urs, dann ist das Kopplungsungleichgewicht vollständig
- Folgerung für Aussenstehende:
 - Man sieht Michaela und denkt: "bestimmt ist der Urs in der Nähe" bzw. "die ist doch immer mit dem Urs unterwegs"
 - Man weiss gar nichts über Urs, aber Michaela blüht plötzlich sichtlich auf – man vermutet: "wahrscheinlich ist sie im Kopplungsungleichgewicht mit einem, der einen guten Einfluss auf sie hat!" ☺

Unterschiedliche Philosophien

Kandidatengenansatz

Genomscan

65

Unterschiedliche Philosophien

Kandidatengenansatz

- Ein Gen, von dem bekannt ist, dass es einen Einfluss auf das biologische System hat (Ausprägung eines Merkmals) wird als **Kandidatengen** bezeichnet
- Vorwissen liegt oft von Genkarten von anderen Spezies vor (z.B. Maus, Mensch, ...)
- → funktionelle Kandidaten
- Resequenzierung des Abschnittes (Gen) in der jeweiligen Spezies
- Nachteil:
 - Sehr kostenintensiv
 - Sehr grosse Anzahl an Kandidatengenen
 - Ursächliche Variante könnte woanders / anderem Gen liegen

Unterschiedliche Philosophien

Genomscan

- Kein Vorwissen
- Klassische Kopplungsanalyse
- Verbindung zwischen Marker und QTL finden
- Verschiedene Versuchsdesigns:
 - QTL mapping zwischen Populationen (Inzuchtlinien)
 - QTL mapping innerhalb Populationen
 - Beispiele dafür gibt's nächstes Mal ©