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Genomic Best Linear Unbiased Prediction (gBLUP)
for the Estimation of Genomic Breeding Values

Samuel A. Clark and Julius van der Werf

Abstract

Genomic best linear unbiased prediction (gBLUP) is a method that utilizes genomic relationships to
estimate the genetic merit of an individual. For this purpose, a genomic relationship matrix is used,
estimated from DNA marker information. The matrix defines the covariance between individuals based
on observed similarity at the genomic level, rather than on expected similarity based on pedigree, so that
more accurate predictions of merit can be made. gBLUP has been used for the prediction of merit in
livestock breeding, may also have some applications to the prediction of disease risk, and is also useful in the
estimation of variance components and genomic heritabilities.
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1 Introduction

1.1 DNA Markers for
the Prediction of Merit

The availability of dense DNA marker information has enabled the
large-scale genotyping of individuals for prediction of an indivi-
dual’s genetic merit. The most common markers used for the
prediction of disease risk and genetic merit are called single nucleo-
tide polymorphisms (SNPs) and are abundant on the genome.
These genetic markers have been used for various purposes in
human, livestock, and plant genetics. Some uses include: the detec-
tion of areas of the genome that have a significant effect on quanti-
tative trait variation (quantitative trait loci—QTL), the prediction
of an individual’s risk to disease infection, and the estimation of
heritability and genetic variance components [1]. In animal and
plant industries, genetic markers have also been used to determine
the genetic value of individuals so that they can be selected for
breeding purposes.

Numerous statistical methods have been useful in helping make
these predictions more accurate. A common, simple approach is
single marker linear regression, which is used to identify significant

Cedric Gondro et al. (eds.), Genome-Wide Association Studies and Genomic Prediction, Methods in Molecular Biology, vol. 1019,
DOI 10.1007/978-1-62703-447-0_13, # Springer Science+Business Media, LLC 2013

321

peter.vonrohr@gmail.com



regions of the genome and has been extensively used for finding
QTL (commonly referred to as association studies). However,
there is an important statistical problem that the number of SNP
effects is usually much larger than the number of observed pheno-
types. One solution is to model SNP effects as random effects and
make prior assumptions about the variance explained due to their
effects. Some nonlinear methods such as Bayes A, Bayes B [2, 3],
and Bayes C [4] give more emphasis to some genomic regions by
allowing the variance to differ between SNP loci, whereas the
genomic best linear unbiased prediction (gBLUP) method assigns
the same variance to all loci and essentially treats them all as equally
important.

1.2 Results Using
gBLUP in Genomic
Research

gBLUP has been examined in many research articles and has been
shown to obtain as accurate or more accurate breeding values in
livestock breeding programs than pedigree-based BLUP. VanRaden
et al. [5] reported increases in breeding value accuracies of
20–50 %, similarly Harris et al. [6] used gBLUP to generate geno-
mic predictions on 4,500 dairy cattle and found that reliabilities
were 16–33 % higher than the breeding values based on parent
average information for milk production traits. Moser et al. [7] also
showed that there was very little difference between using gBLUP
and the nonlinear models (i.e., Bayes A, B). However, Habier et al.
[8] showed that these predictions quickly erode when the relation-
ship between individuals with phenotypic information and those
being predicted reduces. Clark et al. [9] showed that predictions
using the Bayes B method would be more accurate if significant
QTL exist, but accuracies become more equal to gBLUP when
there are many QTL each with a small effect. All of these methods
fit all SNP effects simultaneously in a prediction model, and in the
context of a genome wide association study, Yang et al. [1] showed
that in estimating the variance components and heritability of
human height that common SNPs explain a larger proportion of
genetic variance than the sum of significant SNPs obtained from
single marker regressions.

2 Methods

2.1 Incorporating
Marker Information
into Best Linear
Unbiased Prediction
(BLUP)

The use of best linear unbiased prediction (BLUP) has enabled
large amounts of genetic gain to be achieved in many livestock
breeding programs. The traditional BLUP methodology relies on
pedigree information to define the covariance between known
relatives. This covariance can also be defined by using large
amounts of DNA marker information, most commonly a large
number of SNP markers. This matrix is termed the genomic rela-
tionship matrix (GRM). We will discuss two methods to incorpo-
rate genomic information into BLUP: ridge regression BLUP
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(RR-BLUP) and genomic BLUP (gBLUP), and we will show how
they are equivalent.

2.1.1 Ridge Regression

BLUP

This method was examined by Meuwissen et al. [2] and Habier
et al. [8] which assume the model

y ¼ 1nμþ
X

i

W qi þ e

where μ is the mean,W is a matrix that contains genotypes coded as
0, 1, or 2, and qi is the effect of each SNP. The elements in W in
each column j have an amount 2pj (where pj is the minor allele
frequency of marker j) subtracted from the genotype code to
achieve that the sum of coefficients in each column is zero. Here,
the SNP effects are treated as random and summed over all seg-
ments. The genetic variance explained by the SNP effects is given by
WW 0σ2q and the residual variance is Iσ2

e , and the variance–covar-

iance matrix among observations is therefore WW 0σ2q þ Iσ2e . The
variance for each SNP can be assumed equal. This method has also
been termed RR (ridge regression or random regression) BLUP [8]
or SNP BLUP. Alternatively, this variance has to be estimated for
each SNP, in which a prior distribution of the SNP effects has to
be assumed. Bayesian methods have been proposed to achieve this
(see, e.g., [2–4]).

2.1.2 Genomic Best

Linear Unbiased Prediction

The second method used to combine genomic information into
BLUP is using a GRM as a substitute for the numerator relation-
ship matrix and is called gBLUP. The gBLUP method was intro-
duced by VanRaden [10] and Habier et al. [8]. In practice, the
model used to implement gBLUP is:

y ¼ X b þ Zg þ e

where y is a vector of phenotypes, X is a design matrix relating the
fixed effects to each animal, b is a vector of fixed effects,Z is a design
matrix allocating records to genetic values, g is a vector of additive
genetic effects for an individual, and e is a vector of random normal
deviates with variance σ2

e . Furthermore varðgÞ ¼ Gσ2g where G is
the genomic relationship matrix, and σ2g is the genetic variance for
this model. Note that the vector g contains animals with phenotypic
data but can be extended to animals with no phenotypes. The first
group is then referred to as the training or reference population,
whereas the latter is the test population or a set of individuals to be
predicted.

gBLUP has three important features that make it more desir-
able to use than RR-BLUP: (1) the dimensions of the genetic
effects in the mixed model equations is reduced from m % m
(where m is the number of markers) in RR-BLUP to n % n
(where n is the number of individuals in the population) in
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gBLUP, which is computationally more efficient; (2) the accuracy
of an individual’s genomic estimated breeding value (GEBV) can be
calculated in the same way as in pedigree-based BLUP; and (3)
gBLUP information can be incorporated with pedigree informa-
tion in a single step method [11].

2.1.3 Equivalence

Between gBLUP

and RR-BLUP

Habier et al. [8] showed that gBLUP and RR-BLUP are actually
equivalent models. Themodel for gBLUP (ignoring fixed effects) is
given by:

y ¼ 1nμþ Zg þ e

where y is a vector of phenotypes, 1n is a vector of ones, μ is the
mean, Z is a design matrix allocating records to genetic values, g is a
vector of additive genetic effects for an individual, and e is a vector
of random normal deviates σ2e . The variance of y in this model is
given by ðZGZ 0σ2g þ Iσ2e Þ where σ2e is the residual variance.

Similarly the model for RR-BLUP is given by:

y ¼ 1nμþ
X

i

W qi þ e

where μ is the mean, W is an incidence matrix linking observations
to SNP genotypes, qi is the effect of each SNP which is treated as
random, and the variance of y is varðyÞWW 0σ2q þ Iσ2e (assuming
equal variance for each SNP), therefore the variance of y in
gBLUP and RR-BLUP is the same (see Note 1).

2.2 Building the
Genomic Relationship
Matrix

Combining the information from genetic markers into a relation-
ship matrix was first suggested by Nejati Javaremi et al. [12].
Similarly, Villaneuva et al. [13] examined the use of a GRM as a
method of genomic evaluation and suggested that when genetic
variation is explained by many QTL of small effect, BLUP using a
GRM can be used to produce higher accuracy estimates than
pedigree-based BLUP by representing additive relationships
between individuals based on information using shared DNA mar-
kers. Relationship estimates in the GRM can deviate from the
expected relationship given in the numerator relationship matrix
A. For example, variation in the relationship between two full
siblings may range from 0.4 to 0.6 instead of the expectation of
0.5 given in A [15, 16]. This exploitation of the variation in
relationships is what makes the GRM a useful tool in genomic
evaluations. Estimates of the GRM can be formed using different
methods and various ways to make the GRM have been proposed
[1, 10, 14]. Some of these will be presented in this section.

2.2.1 VanRaden [10] The method presented by VanRaden [10] essentially develops the
matrix W as presented in Subheading 2.1.1. He defined an inci-
dence matrix M, coded as &1, 0, 1 that specifies which alleles each
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individual has inherited. The minor allele frequency (the SNP allele
with the lowest frequency) at locus i is pi, and the matrix P contains
the allele frequencies expressed as a difference from 0.5 and multi-
plied by 2, such that column i of P is 2(pi & 0.5). Subtraction of P
fromM gives exactlyW (termedmatrix Z in [10]). Theminor allele
frequency correction forces the sum of coefficients across animals to
be zero for each marker. I also give more weighting to rare alleles
than to common alleles when calculating genomic relationships.
The GRM is calculated as G ¼ WW 0=½2

P
pið1& piÞ(. The divi-

sion by 2
P

pið1& piÞ places G on the same scale to the numerator
relationship matrix (A) which is used widely in livestock breeding;
however, this is only if the allele frequencies used to scale G are
referring to the same base population as used in A (see Note 2).

2.2.2 Yang et al. [1] Other genomic matrices have been proposed, such as the one used
by Yang et al. [1]. Here, they combined the information on all N
SNPs (i) (coded 0, 1, 2) to calculate the relationship between
individuals j and k into the GRM (Gijk) using a weighting scheme
based on allele frequencies similar to VanRaden [8]. Weighting the
off-diagonal and diagonal elements differently, when j 6¼ k then:

Gjk ¼
1

N

X

i

Gijk ¼
1

N

X

i

ðwij & 2piÞðwik & 2piÞ
2pið1& piÞ

When j is equal to k (i.e., the relationship of an individual to
itself), then:

Gjk ¼
1

N

X

i

Gijk ¼ 1þ 1

N

X

i

w2
ij & ð1& 2piÞwij þ 2p2i

2pið1& piÞ

where wij is the element ofW pertaining to marker i and individual
j. These estimates of relationship are all relative to a base population
in which the average relationship between individuals is zero
(all individuals are completely unrelated). Yang et al. [1] used the
individuals in the sample as the base so that the average relationship
between all pairs of individuals is 0 and the average relationship of
an individual with him- or herself is 1. N is the number of markers.

2.2.3 Goddard et al. [14] The matrix Gm can be constructed as Gm ¼ WW 0=M where each
element of matrixW is formed as in Yang et al. ([1], see above) and
M ¼

P
2pj ð1& pj Þ. The matrix A is the matrix with expected

numerator relationships as derived from the pedigree information.
Then, Ĝ can be calculated as

Ĝ ¼ ½A þ bðGm &AÞ(

where σ2a is the additive genetic variance and σ2g is the variance of
each of the marker effects, b ¼ σ2g=σ

2
a. The regression of Ĝ back

toward A is said to now remove some of the error associated with
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estimating genomic relationships from a finite number of markers,
therefore acknowledging that Ĝ is an estimate of the true genomic
relationship G.

2.3 How gBLUP
Works

In the model used for RR-BLUP, the variance of known
phenotypes can be written as WW0 + λI where W links individual
phenotypes to the marker effects, which is a matrix of animal
genotypes coded 0, 1, or 2 (for the number of copies of a specific
allele the animal has), and λ ¼ σ2e =σ

2
g . The multiplication of WW0

gives the correlation between the genomes of two individuals and
the elements of the corresponding matrix have the same expected
values as the numerator relationship matrix (A) in the traditional
BLUP equations. This is important because it further solidifies that
even if there is no linkage disequilibrium (LD) then genomic
estimates of merit will have a nonzero value because of the relation-
ships between animals inWW0. However, this also may mean that if
LD is low then predictions of merit may quickly erode as the
relationship between animals reduces [3, 8, 17, 18].

Using the GRM to compute genomic breeding values has sim-
plified how genomic predictions are estimated and can be easily
completed in software such as ASReml [19] (see Note 3) and R.
The GRM combines data on all n animals with phenotypes and
genotypes and links it to animals that have genotypes collected but
no phenotypic information. ASReml [19] allows for an animal model
to be fitted where the inverse of the G matrix is used to fit the
covariance structure among the animal effects (see Notes 4 and 5).
The mixed model looks like:

X 0X X 0X 0
Z 0X Z 0Z þG11 G12

0 G21 G22

2

4

3

5
b
g1
g2

2

4

3

5 ¼
X 0y
Z 0y
0

2

4

3

5

The positions of the GRM G11 is the subset of individuals that
have phenotypic and genotypic information recorded on them,
positions G12 and G21 pertain to the relationships between the
animals with phenotypic data and those without, and G22 repre-
sents the animals without phenotypic measurements. The breeding
values of animals without phenotypes are therefore estimated as:

bg2 ¼ &ðG22Þ&1
G21 bg1

This is the genomic regression of breeding values of animals
without data on the breeding value of animals with data or gBLUP.

2.4 A Simple
Example Using
Genomic BLUP

Let us assume we have five animals, four have phenotypes and we
wish to use genotypic information to predict the breeding value of
the fifth animal. Let us also assume that animal 1 is the parent of 2,
3, and 5, with there being no information about the ancestry
of animal 4. If we assume that fixed effects are known and
that each value of y is a deviation from the mean using BLUP
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based on pedigree, we obtain estimates of each animal as

û ¼ ðZ 0Z þA&1Þ&1
Z 0y. To obtain estimates using genomic infor-

mation G&1 replaces A&1.

A ¼

1 0:5 0:5 0 0:5
0:5 1 0:25 0 0:25
0:5 0:25 1 0 0:25
0 0 0 1 0
0:5 0:25 0:25 0 1

2

66664

3

77775

G ¼

1:0 0:50 0:50 0:02 0:50
0:50 1:0 0:20 0:015 0:20
0:5 0:20 1:0 0:025 0:30
0:02 0:015 0:025 1:0 0:20
0:5 0:20 0:30 0:02 1:0

2

66664

3

77775

The A matrix is derived from the path coefficients from the
pedigree. Whereas theG is an arbitrary example in which animal 3 is
more similar to animal 5 than animal 2 (based on the expected
degrees of relationship for half siblings). In the pedigree example,
animal 4 is completely unrelated to the other animals; however,
now with genomic data animal 4 shares some information with the
other ones.

When assuming a heritability of 0.25, the breeding value of
animal 5 would be estimated as;

cu5 ¼ 0:5cu1 (Note thatcu1 contains also phenotypic information
from animals 2 and 3).

Whereas under gBLUP, the prediction would be according to:

bg5 ¼ 0:499 bg1 & 0:026 bg2 þ 0:0622 bg3 þ 0:0144 bg4

2.5 What Information
Is Used

The regression coefficients presented above may not make sense at
first because it seems illogical that the weight on the breeding value
of animal 2 is negative and the weight on animal 4, which is far less
related, is positive. The reason for this is that most of the informa-
tion in 2 is used to predict the breeding value of 1. The importance
of different sources of information can also be illustrated by
the regression of the breeding values on phenotypes. These can
be calculated as cu5 ¼ GZ 0V 0&1y and for animal 5 the result
shows that

cu5 ¼ 0:1136by1 & 0:0455by2 þ 0:0455by3
bg5 ¼ 0:1135by1 þ 0:0328by2 þ 0:0591by3 þ 0:0519by4

This has important consequences for interpreting the results of
gBLUP. It illustrates that gBLUP and Pedigree BLUP are very
similar and share similar sources of information. It also illustrates
that information on unrelated individuals may now be included in
an estimate of a breeding value. Given that animal 4 contributed no
information in pedigree BLUP and now influences the prediction
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in gBLUP. In this example, this would have a small effect, as the
coefficient is small, but in a larger reference population there may
be thousands of records contributing a small amount of informa-
tion, altogether contributing to a large increase in accuracy.
Another important implication of using genomic relationships in
BLUP is that now known siblings can contribute different amounts
of information to breeding value estimates, as there is now some
ability to differentiate between these animals and access some of the
within family variation, due to Mendelian sampling.

Example 1 VanRaden 2008 implementation of the GRM and
gBLUP

#Making the genomic relationship matrix

nmarkers¼1000

data ¼ matrix(scan("genotypes.txt"),ncol¼nmarkers,byrow¼-

TRUE);

sumpq¼0

freq¼dim(data)[1]

P¼freq

lamda¼ncol(data)

for(i in 1:ncol(data)){(freq[i]<&((mean(data[,i])/2)))

(P[i]¼(2*(freq[i]-0.5)))

(sumpq¼sumpq+(freq[i]*(1-freq[i])))}

Z<&data

for(i in 1:nrow(data)){

for(j in 1:ncol(data)){(Z[i,j]<&((data[i,j]-1)-(P[j])))}

}
Zt¼t(Z)

ZtZ¼Z%*%Zt

G¼ZtZ/(2*sumpq)

G

#gBLUP

for(i in 1:nrow(G)){

(G[i,i]<&((G[i,i]+0.01)))}

y¼matrix(scan("phen.txt"),ncol¼1,byrow¼TRUE);

I¼matrix(1,100,1)

EBV¼(solve(1+(lamda*solve(G))))%*%y

3 Notes

1. The gBLUP method that uses a GRM is equivalent to the
RR-BLUP method only when markers in WW 0 in the RR
model are scaled the same as those used to calculate G, i.e.,
XX 0 ¼ X ij=2

P
pið1& piÞ. Furthermore gBLUP and RR -

BLUP are only equivalent when Gσ2g ¼ WW 0σ2q
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2. When building the GRM, it may be important to examine the
allele frequencies used to scale the matrix. In the original
gBLUP method of VanRaden [10], it was proposed that fre-
quencies should be of the base population and therefore needed
to be estimated. However, recent work by Forni et al. [20]
suggests that similar results can be obtained using the allele
frequencies of the current population. The definition of the allele
frequencies affects when the base animals are observed and is
mainly important when gBLUP is used in the single step method
of Misztal et al. [11]. The single step method combines pedigree
and genomic information so that this information can be used to
predict a single breeding value. Combining this information
requires the base populations of genomic and pedigree relation-
ship populations to be the same.

3. The ASReml software is easily used to implement gBLUP and
can be downloaded from: http://www.vsni.co.uk/downloads/
asreml.

4. To undertake gBLUP using ASReml, the user must provide a
predefined GRM. This can be inverted and loaded into ASReml
as a .giv file.

5. Often large data sets in ASReml can require more memory to
be allocated to the program, this can be achieved by entering
–s8 into the command line (see ASReml users guide for more
details).
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