Appendix

Derivation of BLUP

The material in this section is not required but it is additional material for those
who are interested in knowing more of the background and of the sources that
have led to the methods presented earlier in these course notes.

In chapter 3 we have assumed the solution for the mixed linear effects model
using BLUP as a given fact without deriving them. So far we were given the
recipe to use mixed model equations to produce estimates of fixed effects and
predictions of random effects.

There are many derivations and explanations about BLUP. But most of them

including the original work by Henderson are not easy to understand. I found

the derivation given by [Schaeffer, 2019] to be in the same spirit as the derivation

that we have used for the fixed linear effects model. In the chapter about predic-

tion theory (http://animalbiosciences.uoguelph.ca/~1rs/ABModels/NOTES/predict.pdf)
in the Notes section of [Schaeffer, 2019] the BLUP solutions and the mixed

model equations are derived in an understandable way.

At this point, we are going to replicate the complete derivation. We rather try
to provide some additional explanations which might help in understanding the
given derivation. Sections 1 and 2 of the chapter on prediction theory given
an introduction and specify the mixed linear effects model. The introduction
starts with a definition of the term prediction. It has to be noted here that the
distinction between estimation for fixed effects and prediction for random
effects is much sharper and much stricter in the English language than it is e.g. in
German. The mixed linear effects model is called General Linear Mixed Model
in the cited reference. But those terms mean the same model which is given by
the model equation and by the specified expectations and variance-covariance
matrices.

In section 3 some general facts about different predictors are given. These
facts are used as an explanation of why the given predictand used in section 4
where BLUP is derived. The term predictand is defined as the function of the
unknown parameters. The predictor is the linear function of the data that
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is used to predict the predictand. The reason why the predictand is a linear
function of the unknown parameters is similar to what was described about
estimability in chapter 4 about estimability of linear functions of parameters.
The estimation and prediction problems often lead to over-determined systems
of linear equations where the unknowns can be expressed as linear combinations
of the data. The linear factors with which the data vector is multiplied usually
involves some generalized inverses of a matrix. Since these generalized inverses
are not unique and because many solutions do exist for the over-determined
systems, only predictands are useful which are invariant that means which do
not depend on the choice of a specific solution to the system of equations that
arise in the prediction problem. Prediction and Estimation Theory has shown
that there exist linear functions which are invariant to the choice of the equation
solutions. Such functions are called estimable functions and in the context of
mixed linear effects models they are written as

Kb+ My

The above shown linear function of the unknown parameter which is to be
predicted by a linear function LTy of the data y together with the properties of

o unbiasedness and
¢ minimum error variance

lead to the BLUP solutions for the estimates b for the fixed effects and the
predictions 4 for the random effects. These correspond to

b= (XTv1x)"xTv—1ly
and
o=GZTV 1 (y — Xb)
In sections 5 and 6 the variance of the predictors and the variance of the pre-

diction error are shown. Section 7 then shows how the mixed model equations
produce the same results as found in section 4.
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