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The computation of the regression coefficient for the dataset shown in Table 2.2
will be the topic of an exercise. But let us assume that we have computed the
value of b, then the predicted value of the body weight 7, for an animal s is
computed based on the measured breast circumference x, of animal s as follows

~

Js = b, (2.22)

It has to be noted that the prediction 7, is only valid, if the measured value
T is close to the measured predictors that were used to estimate b. For our
example with body weight and breast circumference, we could not use the same
regression line to predict the body weight for calves, if b was estimated with
data of adult bulls.

2.9 Regression On Dummy Variables

In a regression model (such as shown in (2.10)) both the response variable and
the predictor variables are continuous variables. Examples of such variables are
body weight and breast circumference which are both measured and the
measurements are expressed as real numbers. In contrast to such a regression
model, the statistical model shown in (2.6) has a continuous response, but the
predictor variables are discrete variables. The predictor variables are assumed
to be genotypes of a certain set of SNP genotypes and hence these genotypes
can only have a fixed number of states. Under the assumption of bi-allelic Loci,
a SNP locus can have just three genotypes and hence the predictor variable that
is used to represent any given SNP-locus can only take three discrete states.

Figure 2.3 shows the difference between a regression model as the one of body
weight on breast circumference and a fixed linear effects model where one
locus has an effect on a quantitative trait. In the left diagram of Figure 2.3
the red line denotes the regression line. This line is meaningful because on
the x-axis and on the y-axis every single point of the red line would be valid
observations. On the x-axis of the diagram on the righthand side, only three
values are possible. In the diagram they are shown as Genotypes G1G1, G1G2
and G2G5. We will see very soon that in our statistical model, they will be
encoded by 1, 0 and —1. The response variable in the diagram on the right of
Figure 2.3 is a continuous random variable, similarly to the regression model
shown in the left diagram. This combination of continuous response variable on
a discrete type of variable lead to the term regression on dummy variables
because the predictor variables are not continuous but just discrete levels of
a certain factor. In this lecture, we are using fixed linear effects model
rather than regression on dummy variables for the same type of model. The
term of fixed linear effects model was used, because in the next chapter in
Genomic BLUP we are going to introduce mixed linear effects model which are
an extension of the fixed linear effects model used in this chapter.



2.9. REGRESSION ON DUMMY VARIABLES 29

‘Body Weight'
Observation

182

180
‘Breast Circumference* ;
SNP G

Figure 2.3: Comparison Between Regression Model And Fixed Linear Effects
Model With An SNP-Locus As A Discrete Predictor Variables

2.9.1 Fixed Linear Effects Model For SNP Data

We are using genetic data and assume that the SNP genotypes have an effect on
a quantitative trait. Our goal is to predict genomic breeding values based on the
information from the SNP genotypes for the quantitative traits. We have seen
that under some simplifying assumptions of additivity of the genetic effects, the
genomic breeding values depend on the absolute value of the genotypic values (a
values) of the homozygous SNP genotypes. Hence all we need to know from our
analysis of the data under a fixed linear effects model are the a values for each
SNP locus. The decomposition of the phenotypic observation shown in 2.4.1
under the assumed genetic model tells us that the phenotypic observation can
be explained as a linear function of the genotypic values of the SNP genotypes
plus a random error term. The fact that our genetic model is a fixed linear effects
model that uses phenotypic observations as response and SNP loci as predictors
allows us to set up the following model for an example data set shown in the
following subsection.

2.9.2 Example Data Set With SNP Loci And A Pheno-
typic Observation

We are using the dataset shown in Table 2.3 as an example on how to use a
fixed linear effects model to estimate the genotypic value of the SNP genotypes.

Instead of fitting individual effects for the different SNP genotypes to explain
the response variable, we are directly including the genotypic values ag and ag
into the fixed effects linear model. How the genotypic values are related to the
SNP genotypes is also shown in Table 2.3. For all animals in Table 2.3, we can
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Table 2.3: Animals With A Single SNP Locus Affecting A Quantitative Trait

Animal SNP G

Genotypic Value G SNP H

Genotypic Value H Observation

1 GGy
2 G1Gy
3 Gi1Gy
4 GGy
5 GGy
6 Gi1Go
7 G1Gs
8 GaGs
9 GGy
10 G2Ge
11 G1Gy
12 G1Gy
13 GGy
14 G2Ge
15 G1Gs
16  G1Gs
17 GGy
18 GGy
19 G1Gy
20 G1Gs

ag

0

0

e
aG

0

0
—ac
0
—ac

ag
ag
—ac
—ag
0

0
aG
aG

ag
0

HyHy
HyH,
H H,
HyHo
HyH,

HyHy
HyHo
HiHy
HyHy
HyHy

HH,
HiHy
HyHj
HyHy
HyH,

HiH,
HyHy
HyHy
HyHy
HyHy

0

ag
afg
—ay
ag

0
—ay
afg
—ay

510
528
505
539
530

489
486
485
478
479

520
521
473
457
497

516
524
502
508
506

write the model equations in matrix-vector notation as

where y is the vector of observations, b is a vector of genotypic values plus an
intercept, X is a design matrix linking the elements in b to y and € is a vector
of random errors. Writing out the matrices and vectors leads to

y=Xb+e¢

(2.23)
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2.9.3 Parameter Estimation In A Fixed Linear Effects
Model

The goal for model (2.23) is to get an estimate for the unknown parameters by,
ag and ag. In section 2.9.3 we saw how unknown parameters can be estimated
for a regression model using least squares. When applying the least squares
method, we did not make any assumptions about the predictor variables. The
minimization of the sum of the squared residuals can also be applied for the fixed
linear effects model. This minimization leads to the same normal equations

XTxp© = xTy (2.25)

So far everything was identical to the case of the regression model. But when
trying to find a solution for (2.25) we have to account for the different nature
of the design matrix X. In the regression model this matrix X contains real
numbers. In our example of a fixed linear effects model, the matrix X just
contains just the three number —1, 0 and 1*. The fact that the matrix X
contains only a few discrete values makes it very likely that X does not have
full column rank. That means it is very likely that some columns of X can be
expressed as linear combinations of other columns. This linear dependence of
the columns of X causes the matrix X7 X to be singular and hence the inverse of

4In most other fixed linear effects models, the design matrix contains just 0 and 1.
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XT X cannot be computed. Whenever the matrix X7 X is singular, the solution
given in (2.17) cannot be computed.

The normal equations in (2.25) are written with the symbol ) to denote that
the equations do not have a single solution b(?) in the sense that we were able
to compute them in the case of the regression model. In the case where X7 X
is singular, there are infinitely many solutions 5(®). These solutions can be
expressed as

b = (xTX)~xTy (2.26)

where (X7 X)~ denotes the generalized inverse of the matrix X7 X. A gen-
eralized inverse G of a given matrix A is defined as the matrix that satisfies
the equation AGA = A. The matrix G is not unique. Applying the concept
of a generalized inverse to a system of equations Ax = y, it can be shown that
x = Gy is a solution, if G is a generalized inverse of A. Because G is not unique,
there are infinitely many solutions corresponding to & = Gy + (GA — I)z where
z can be an arbitrary vector of consistent order. Applying these statements
concerning generalized inverses and solutions to systems of equations to (2.26),
it means that b() is not a unique solution to (2.25) because the generalized in-
verse (X7 X)~ is not unique. As a consequence of that the solution 5(°) cannot
be used as an estimate of the unknown parameter vector b.

The numeric solution of the analysis of the example dataset given in Table 2.3
is the topic of an exercise. When developing that solution, we will see that some
linear functions of b(®) can be found which do not depend on the choice of the
generalized inverse (X7 X)~. Such functions are called estimable functions
and can be used as estimates for the unknown parameter vector b. More details
about generalized inverses and estimable functions can be found in [Searle, 1971].
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