Chapter 4

Model Selection

The aim of model selection is to find from a set of predictor variables those
which are relevant for the response variable. Relevance in this context means
that variability of the predictor is associated with variability of the response
variable. Furthermore this co-existence of variability of predictors and response
has to be quantifiable by a linear function, such as the one given in the model
(4.1).

In a practical data analysis setting, the dataset used as input to the analy-
sis may have many predictor variables. But it is not guaranteed that all of
them have an influence on the response variable. Because we want to model
the responses with a linear function of the predictor variables, every additional
predictor variable introduces an additional coefficient that must be estimated.
Every estimated coefficient leads to more variability in the predicted response
values of a given model. Hence if a model should be used to predict new re-
sponses based on observed predictor values, the increased variability decreases
the predictive power.

We assume the following linear model

P
yi:ZBjxij+€i (i=1,...,n) (4.1)
=1

where €1, ..., €, are identically independently distributed (i.i.d) with E(e;) =0
and var(e;) = 0%. The model selection problem can be stated by the following
question.

“Which of the predictor variables should be used in the linear
model?”

As already mentioned, it may be that not all of the p predictor variables in-
cluded in the full model shown in (4.1) are relevant. Predictors that are not
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relevant should not be included in a model because every coefficient of a predic-
tor must be estimated and leads to increased variability of the fitted model. In
case where this variability is caused by non-relevant predictor variables, the pre-
dictive power of the estimated model is lowered. As a consequence, we are often
looking for an optimal or the best model given the available input dataset.

4.1 Bias-Variance Trade-Off

What was explained above can be formalized a bit more. Suppose, we are
looking for optimizing the prediction

q A
> Bjwij, (4.2)
r=1

which includes ¢ relevant predictor variables with indices taken from the vector
Jwith j1,...,74 € {1,...,p}. The average mean squared error of the prediction
in (4.2) can be computed as
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where m(.) denotes the linear function in the true model with p predictor vari-

2
ables. The systematic error n=* > " (E [Zgzl ﬁjracijr} - m(mz)) is called
squared bias and this quantity is expected to decrease as the number of predic-
tors g increases. But the variance term increases with the number of predictors
q. This fact is called the bias-variance trade-off which is present in many
applications in statistics. Now finding the best model corresponds to finding the
model that optimizes the bias-variance trade-off. This process is also referred
to as regularization.

4.2 Mallows C, Statistic

The mean square error in (4.3) is unknown because we do not know the magni-
tude of the bias. But MSE can be estimated.

Let us denote by SSE(M) the residual sum of squares in the model M. Unfor-
tunately SSE (M) cannot be used to estimate M.SE because SSE(M) becomes
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smaller the more predictors are included in the model M. The number of pre-
dictors in the model M is also often referred to as the size of the model and is
written as |[M].

For any (sub-) model M which involves some (or all) of the predictor variables,
the mean square error (M SFE) can be estimated by

MSE =n"'SSE(M) — 6% + 26%| M|/n (4.4)

where 62 is the error variance estimate in the full model and SSE(M) is the
residual sum of squares in the sub-model M. Hence to find the best model, we
could search for the sub-model M that minimizes MSE. Because 2 and n are
constants with respect to sub-models M, we can also consider the well-known
C) statistic

_ SSE(M)

Cp(M) S 2 M| (4.5)

and search for the sub-model M minimizing the C), statistic.

4.3 Searching For The Best Model With Re-
spect To C,

If the full model has p predictor variables, there are 2P —1 sub-models (every pre-
dictor can be considered in a sub-model or not. The empty sub-model without
any predictors is excluded here).

Therefore, an exhaustive search for the sub-model M minimizing C), is only
feasible if p is less than 16 which results in 2'6 — 1 = 6.5535 x 10* sub-models
to be tested. If p is much larger, we can proceed with one of the two following
stepwise algorithms.

4.3.1 Forward Selection

1. Start with the smallest model M with only a general mean as the current
model

2. Include the predictor variable to the current model which reduces the
residual sum of squares the most.

3. Continue with step 2 until all predictor variables have been chosen or until
a large number of predictor variables have been selected. This produces a
sequence of sub-models My C M; C M5 C ...

4. Choose the model in the sequence My C M; C My C ... with the
smallest C), value.
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4.3.2 Backward Selection

1. Start with the full model Mg as the current model. The full model is the
model including all p predictor variables

2. Exclude the predictor variable from the current model which increases the
residual sum of squares the least.

3. Continue with step 2 until all predictor values have been deleted (or a
large number of variables have been deleted). This produces a sequence
of sub-models Mg D M; D My D ...

4. Choose the model in the sequence My O M7 DO My D ... which has the
smallest C), value.

4.3.3 Considerations

Backward selection (4.3.2) typically leads to better results than forward selec-
tion, but it is computationally more expensive. But in the case where p > n,
the full model cannot be fitted and backward selection is not possible. Forward
selection might then be a possibility, but alternative estimation procedures such
as LASSO might be a better solution.

4.4 Alternative Model Selection Criteria

Other popular criteria to estimate the predictive potential of an estimated model
are Akaike'w information criterion (AIC) and the Bayesian information crite-
rion (BIC). Both of them are based on the likelihood and require therefore
assumptions about the distribution of the data.

The goodness of the fit of the linear model for explaining the data is quantified
by the coefficient of determination which is typically abbreviated by R? where

_ g —gll?

R2=12 20
lly — yl|?

(4.6)

where || — #||? are the sum of squares explained by the model and ||y — ¥||?
stands for the total sum of squares around the global mean y. The coefficient of
determination R? is always increasing the more predictor variables are included
in the model. This behavior can be corrected as proposed in [Yin and Fan, 2001].
This correction includes the number of predictor variables an hence reduces the
favoring of the full model. The result of the correction is the adjusted R? which
is computed as

—1
R, =1-(1-R*)— (4.7)

n—p—1
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where R? is the unadjusted coefficient of determination given by (4.6), n stands
for the number of observations and p is the number of predictor variables. The
formula in (4.7) holds for sub-models that include an intercept term. For sub-
models without intercept, the —1 in both numerator and the denominator of
(4.7) can be dropped.

The adjusted coefficient of determination (Ridj) allows to assess the goodness
of fit of a model. That assessment considers the number of predictor variables

included in the model.
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