Least Absolute Shrinkage And Selection Operator (LASSO)

Peter von Rohr

18.03.2019

Fixed Linear Effect Model

 \blacktriangleright Back to

$$
y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i
$$

 \blacktriangleright All $\beta_0, \beta_1, \ldots, \beta_p$ into vector β of length (*p* + 1)

$$
y = X\beta + \epsilon
$$

 \triangleright Only random componente: ϵ with

$$
E(\epsilon) = 0 \text{ and } \text{var}(\epsilon) = I * \sigma^2
$$

Parameter Estimation

 \blacktriangleright Least Squares

$$
\hat{\beta}_{LS} = \text{argmin}_{\beta} ||y - X\beta||^2
$$

 \blacktriangleright Normal Equations

$$
(X^TX)\hat{\beta}_{LS} = X^Ty
$$

Existence of $(X^TX)^{-1}$?

1. Yes:
$$
\hat{\beta}_{LS} = (X^T X)^{-1} X^T y
$$

2. No: $b_0 = (X^T X)^{-1} X^T y$

with $(X^{\mathcal{T}}X)^{-}$ being a generalized inverse of $(X^{\mathcal{T}}X)$

Generalized Inverse

 \triangleright System of equations

$$
Ax=y
$$

with coefficient matrix A, vector of unknowns x and vector of right hand side y

- If A^{-1} exists, then unknowns $x = A^{-1}y$
- If A^{-1} does not exist, $x = A^{-}y$ is one solution with A^{-} being a generalized inverse
- ► Generalized inverse A^- defined by

$$
AA^{-}A=A
$$

Solutions

 \triangleright Why is A^- a solution

- \triangleright if $AA^{-}A = A$, then $AA^{-}Ax = Ax$
- ► when $Ax = y$, this gives $A(A^{-}y) = y$
- ► hence $A^-y = x$ is a solution

If A^- is a generalized inverse of A then $Ax = y$ has solutions

$$
\tilde{x} = A^{-}y + (A^{-}A - I)z
$$

for aribitrary z

 \blacktriangleright Proof

$$
A\tilde{x} = AA^{-}y + A(A^{-}A - I)z = AA^{-}y + (AA^{-}A - AI)z = AA^{-}y = y
$$

because $AA^{-}A = A$.

Results

\n- $$
b_0 = (X^T X)^{-1} X^T y
$$
 is a solution to $(X^T X) b_0 = X^T y$
\n- But b_0 is not unique, because for any \S ($X^{T X}$)- \S
\n

$$
\tilde{b}_0 = (X^{\mathsf{T}} X)^{-} X^{\mathsf{T}} y + ((X^{\mathsf{T}} X)^{-} (X^{\mathsf{T}} X) - I) z
$$

is also a solution

 \triangleright b₀ cannot be an estimate for β

Estimable Functions

Idea: construct linear functions (q ^T *β*) of the parameters *β* such that

- ightharpoonup estimator can be found from b_0
- independent of choice of b_0

Such linear functions q ^T *β* must satisfy

$$
q^T \beta = t^T E(y)
$$

for any vector t , then $\bm{q}^{\bm{\mathcal{T}}}\beta$ is $\bm{\text{estimate}}$

 \triangleright Determine q as

$$
q^T = t^T X
$$

Invariance to b_0

When $\bm{{q}^{\mathsf{T}}\beta}$ is estimable, then

- \blacktriangleright $\bm{\mathsf{q}}^{\mathsf{T}}$ b_0 is always the same, independent of choice of b_0
- \blacktriangleright Why?
- \blacktriangleright With $q^{\mathcal{T}}=t^{\mathcal{T}}X$

$$
q^T b_0 = t^T X b_0 = t^T X (X^T X)^{-} X^T y
$$

is independent of choice of b_0 because $X(X^{\mathcal{T}}X)^-\overline{X}^{\mathcal{T}}$ is independent of choice of $(X^{\mathcal{T}} X)^{-1}$

Summary

Use of generalized inverse (X^{TX}) - of normal equations yields

- \triangleright solutions b_0
- \blacktriangleright estimatble functions $\bm{{q}}^{\mathsf{T}}$ *b* $_0$ which estimate $\bm{{q}}^{\mathsf{T}}$ β
- independent of b_0

But for genomic data

- \triangleright no possibility to determine important SNP loci
- \blacktriangleright need an alternative to least squares

Desirable properties

- 1. **Subset Selection**: determine important predictors
- 2. **Shrinkage**: limit parameter estimates to certain area
- 3. **Dimension Reduction**: Reduce p predictors to m linear combinations where m *<* p

LASSO

- ▶ ... stands for Least Absolute Shrinkage and Selection Operator
- \blacktriangleright ... combines subset selection (1) and shrinkage (2)
- \triangleright shrinkage is achieved by introduction of penality term
- \triangleright subset selection is due to the form of penalty term

Shrinkage

\blacktriangleright penalty term added to least squares criterion

$$
\hat{\beta}_{LASSO} = \text{argmin}_{\beta} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| \right\}
$$

 \blacktriangleright large values of $|\beta_j|$ are penalized compared to small $|\beta_j|$

Subset Selection

 $b₁$

Find *λ*

- \blacktriangleright λ is an additional parameter to be estimated from data
- \blacktriangleright use cross validation
	- \triangleright split data randomly into training set (80 90%) and test set $(10 - 20\%)$
	- **Exercise 3** assume a certain λ value and do parameter estimation with training data
	- \triangleright try to predict test data with estimated parameters
	- \blacktriangleright repeat this many times
	- **Ex** take that λ with the best predictive performance