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Why

I Many predictor variables are available
I Are all of them relevant?
I What is the meaning of relevant in this context?



Example Dataset

Animal Breast Circumference Body Weight RandPred

1 176 471 182
2 177 463 182
3 178 481 180
4 179 470 177
5 179 496 177
6 180 491 180
7 181 518 182
8 182 511 176
9 183 510 177
10 184 541 181
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Fitting a Regression Model

##
## Call:
## lm(formula = `Body Weight` ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -29.431 -19.464 -2.658 12.228 47.504
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 686.240 650.120 1.056 0.322
## RandPred -1.065 3.624 -0.294 0.776
##
## Residual standard error: 26.23 on 8 degrees of freedom
## Multiple R-squared: 0.01068, Adjusted R-squared: -0.113
## F-statistic: 0.08636 on 1 and 8 DF, p-value: 0.7763



Fitting a Regression Model II

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287



Multiple Regression

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference` + RandPred,
## data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -11.177 -8.118 2.657 5.539 15.270
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1653.036 418.558 -3.949 0.005537 **
## `Breast Circumference` 9.471 1.366 6.934 0.000224 ***
## RandPred 2.478 1.472 1.683 0.136317
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.996 on 7 degrees of freedom
## Multiple R-squared: 0.8743, Adjusted R-squared: 0.8384
## F-statistic: 24.34 on 2 and 7 DF, p-value: 0.0007046



Which model is better?

Why not taking all predictors?

I Additional parameters must be estimated from data
I Predictive power decreased with too many predictors (cannot

be shown for this data set, because too few data points)
I Bias-variance trade-off



Bias-variance trade-off

I Assume, we are looking for optimum prediction

si =
q∑

r=1
β̂jr xijr

with q relevant predictor variables

I Average mean squared error of prediction si

MSE = n−1
n∑

i=1
E

[
(m(xi)− si)2

]
where m(.) denotes the linear function of the unknown true model.



Bias-variance trade-off II

I MSE can be split into two parts

MSE = n−1
n∑

i=1
(E [si ]−m(xi))2 + n−1

n∑
i=1

var(si)

where n−1 ∑n
i=1 (E [si ]−m(xi))2 is called the squared bias

I Increasing q leads to reduced bias but increased variance
(var(si))

I Hence, find si such that MSE is minimal
I Problem: cannot compute MSE because m(.) is not known

→ estimate MSE



Mallows Cp statistic

I For a given modelM, SSE (M) stands for the residual sum of
squares.

I MSE can be estimated as

M̂SE = n−1SSE (M)− σ̂2 + 2σ̂2|M|/n

where σ̂2 is the estimate of the error variance of the full model,
SSE (M) is the residual sum of squares of the modelM, n is the
number of observations and |M| stands for the number of
predictors inM

Cp(M) = SSE (M)
σ̂2 − n + 2|M|



Searching The Best Model

I Exhaustive search over all sub-models might be too expensive
I For p predictors there are 2p − 1 sub-models
I With p = 16, we get 6.5535× 104 sub-models

→ step-wise approaches



Forward Selection

1. Start with smallest sub-modelM0 as current model
2. Include predictor that reduces SSE the most to current model
3. Repeat step 2 until all predictors are chosen

→ results in sequenceM0 ⊆M1 ⊆M2 ⊆ . . . of sub-models

4. Out of sequence of sub-models choose the one with minimal Cp



Backward Selection

1. Start with full modelM0 as the current model
2. Exclude predictor variable that increases SSE the least from

current model
3. Repeat step 2 until all predictors are excluded (except for

intercept)

→ results in sequenceM0 ⊇M1 ⊇M2 ⊇ . . . of sub-models

4. Out of sequence choose the one with minimal Cp



Considerations

I Whenever possible, choose backward selection, because it
leads to better results

I If p ≥ n, only forward is possible, but then consider LASSO



Alternative Selection Criteria

I AIC or BIC, requires distributional assumptions.
I AIC is implemented in MASS::stepAIC()
I Adjusted R2 is a measure of goodness of fit, but sometimes is

not conclusive when comparing two models
I Try in exercise


