Variance Components Estimation

Peter von Rohr

06.05.2019

Genetic Variation

- \triangleright Requirement for trait to be considered in breeding goal
- \triangleright Breeding means improvement of next generation via selection and mating
- \triangleright Only genetic (additive) components are passed to offspring
- \triangleright Selection should be based on genetic component of trait
- \triangleright Selection only possible with genetic variation

 \rightarrow genetic variation indicates how good characteristics are passed from parents to offspring

 \rightarrow measured by **heritability** $h^2 = \frac{\sigma_{\theta}^2}{\sigma_{\rho}^2}$

Two Traits

no variation with variation $\frac{1}{-2}$ $\frac{1}{x}$ -2 $\frac{1}{x}$ ä

Problems

- **F** Genetic components cannot be observed or measured
- \blacktriangleright Must be estimated from data
- \triangleright Data are mostly phenotypic
- \rightarrow topic of variance components estimation
	- \triangleright Model based, that means connection between phenotypic measure and genetic component are based on certain model

$$
p=g+e
$$

with $cov(g, e) = 0$

► Goal: separate variation due to g (σ_a^2) from phenotypic variation

Example of Variance Components Separation

- \blacktriangleright Estimation of repeatability
- \triangleright Given repeated measurements of same trait at the same animal
- \blacktriangleright Repeatability means variation of measurements at the same animal is smaller than variation between measurements at different animals

Repeatability Plot

Model

$$
y_{ij} = \mu + t_i + \epsilon_{ij}
$$

where

- y_{ij} measurement *j* of animal *i*
- μ expected value of y
- t_i deviation of y_{ii} from μ attributed to animal *i*
- ϵ_{ij} measurement error

Estimation Of Variance Components

$$
\blacktriangleright E(t_i)=0
$$

- \blacktriangleright $\sigma_t^2 = E(t_i^2)$: variance component of total variance (σ_y^2) which can be attributed to the t-effects
- \blacktriangleright $E(\epsilon_{ii}) = 0$
- \blacktriangleright $\sigma_\epsilon^2 = E(\epsilon_{ij}^2)$: variance component attributed to ϵ -effects $\sigma_y^2 = \sigma_t^2 + \sigma_{\epsilon}^2$
- \blacktriangleright Repeatability w defined as:

$$
w = \frac{\sigma_t^2}{\sigma_t^2 + \sigma_{\epsilon}^2}
$$

 \rightarrow estimate of σ_t^2 needed

Analysis Of Variance (ANOVA)

Effect	df	Sum Sq	Mean Sq	$E(Mean Sq)$
Bull (t)	$r-1$	$SSQ(t)$	$SSQ(t)/(r-1)$	$\sigma_{\epsilon}^2 + n * \sigma_{t}^2$
Residual (e)	$N-r$	$SSQ(\epsilon)$	$SSQ(\epsilon)/(N-r)$	σ_{ϵ}^2

where

$$
SSQ(t) = \left[\frac{1}{n}\sum_{i=1}^{r} \left(\sum_{j=1}^{n} y_{ij}\right)^2\right] - \left(\sum_{i=1}^{r} \sum_{j=1}^{n} y_{ij}\right)^2 / N
$$

$$
SSQ(\epsilon) = \sum_{i=1}^r \sum_{j=1}^n y_{ij}^2 - \left[\frac{1}{n} \sum_{i=1}^r \left(\sum_{j=1}^n y_{ij} \right)^2 \right]
$$

Zahlenbeispiel

Df Sum Sq Mean Sq F value Pr(>F) ## Bull 9 286.7 31.85 13.85 8.74e-07 *** ## Residuals 20 46.0 2.30 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Setting expected values of Mean Sq equal to estimates of variance components

$$
\hat{\sigma}_{\epsilon}^2 = 2.3
$$
 and $\hat{\sigma}_{t}^2 = \frac{31.85 - 2.3}{3} = 9.85$

Repeatability

$$
\hat{w} = \frac{\hat{\sigma}_t^2}{\hat{\sigma}_t^2 + \hat{\sigma}_\epsilon^2} = 0.81
$$

Same Strategy for Sire Model

 \triangleright Sire model is a mixed linear effects model with sire effects s as random components

$$
y = Xb + Zs + e
$$

► In case where sires are not related, $\text{Var}(s) = 1 * \sigma_s^2$ ► From σ_s^2 , we get genetic additive variance as $\sigma_a^2 = 4 * \sigma_s^2$

ANOVA

with

$$
k = \frac{1}{r-1} \left[N - \frac{\sum_{i=1}^{r} n_i^2}{N} \right]
$$

Maximum Likelihood (ML)

\blacktriangleright Likelihood

$$
L(\theta) = f(y|\theta)
$$

\blacktriangleright Normal distribution

$$
L(\theta) = (2\pi)^{-1/2n} \sigma^{-n} |H|^{-1/2} * \exp \left\{-\frac{1}{2\sigma^2} (y - Xb)^T H^{-1} (y - Xb)\right\}
$$

with
$$
var(y) = H * \sigma^2
$$
 and $\theta^T = \begin{bmatrix} b & \sigma^2 \end{bmatrix}$

Maximisation of Likelihood

- \triangleright Set $\lambda = logL$
- **Compute partial derivatives of** λ **with respect to all unknowns**

$$
\frac{\partial \lambda}{\partial b}
$$

$$
\frac{\partial \lambda}{\partial \sigma^2}
$$

- \triangleright Set partial derivatives to 0 and solve for unknowns
- \blacktriangleright Use solutions as estimates

Restricted Maximum Likelihood (REML)

- \blacktriangleright Problem with ML: estimate of σ^2 depends on $b\to$ undesirable
- \triangleright Do transformations Sy and Qy
- 1. The matrix S has rank $n t$ and the matrix Q has rank t
- 2. The result of the two transformations are independent, that means $cov(S_V, Q_V) = 0$ which is met when $SHQ^T = 0$
- 3. The matrix S is chosen such that $E(Sy) = 0$ which means $SX = 0$
- 4. The matrix QX is of rank t, so that every linear function of the elements of Qy estimate a linear function of b .

From (i) and (ii) it follows that the likelihood L of v is the product of the likelihoods of Sy (L^*) and Qy (L^{**}) that means

$$
\lambda=\lambda^*+\lambda^{**}
$$

► Variance components are estimated from λ * which will then be independent of b