
Chapter 2

Fixed Linear Effects Models

2.1 Other Resources

This chapter is based on the work of [Buehlmann and Maechler, 2014]. Apart
from that there are many other resources for the topic of Multiple Linear
Regressions. An interesting online book is [Lilja, 2016].

2.2 Motivation

Why is the topic of fixed linear effects models (FLEM) important for
the analysis of genomic data? This question is best answered when looking
at the data. In chapter 1, we saw that genomic breeding values can either
be estimated using a two-step procedure (see section 1.4) or by a single step
approach (see section 1.5). At the moment, we assume that we are in the first
step of the two step approach where we estimate the marker effects (𝑎-values)
in a reference population or alternatively we have a perfect data set with all
animals genotyped and with a phenotypic observation in a single step setting.
Both situations are equivalent when it comes to the structure of the underlying
dataset and with respect to the proposed model to analyse the data.

2.3 Data

As already mentioned in section 2.2, we are assuming that we have a perfect
data set for a given population of animals. That means each animal 𝑖 has a
phenotypic observation 𝑦𝑖 for a given trait of interest. Furthermore, we assume
to just have a map of three SNP markers. The marker loci are called 𝐺, 𝐻 and
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20 CHAPTER 2. FIXED LINEAR EFFECTS MODELS

𝐼 . Each of the markers has just two alleles. Figure 2.1 tries to illustrate the
structure of a dataset used to estimate GBV.

Figure 2.1: Structure of Dataset To Estimate GBV

As can be seen from Figure 2.1 each of the 𝑁 animals have known genotypes
for all three SNP markers and they all have a phenotypic observation 𝑦𝑖 (𝑖 =
1, ⋅, 𝑁). Because we are assuming each SNP marker to be bi-allelic, there are
only three possible marker genotypes at every marker position. Hence marker
genotypes are discrete entities with a fixed number of levels. Due to the nature of
the SNP marker genotype data, we can already say that they could be modeled
as fixed effects in a fixed linear effects model. More details about the model will
follow in section 2.4.

2.4 Model

The goal of our data analysis using the dataset described in section 2.3 is to come
up with estimates for genomic breeding values for all animals in our dataset. The
genomic breeding values will later be used to rank the animals. The ranking
of the animals according to the GBV is used to select the parents of the future
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generation of livestock animals. It probably makes sense to distinguish between
two different types of models that we have to set up. On the one side we need a
model that describes the underlying genetic architecture which is present in our
dataset. We will be using a so-called genetic model to describe this. On the
other side, we have at some point being able to get estimates for the GBVs which
requires a statistical model which is able to estimate unknown parameters as
a function of observed data. In the end, we will realize that the two models are
actually the same model but they are just different ways of looking at the same
structure of underlying phenomena.

2.4.1 Genetic Model

The availability of genomic information for all animals in the dataset makes
it possible to use a polygenic model. In contrast to an infinitesimal model, a
polygenic model uses a finite number of discrete loci to model the genetic part
of an expressed phenotypic observation. From quantitative genetics (see e.g.
[Falconer and Mackay, 1996] for a reference) we know that every phenotypic
observation 𝑦 can be separated into a genetic part 𝑔 and an environmental part
𝑒. This leads to the very simple genetic model

𝑦 = 𝑔 + 𝑒 (2.1)

The environmental part can be split into some fixed known systematic factors
such as herd, season effects, age and more and into a random unknown part.
The systematic factors are typically grouped into a vector of fixed effects called
𝛽. The unknown environmental random part is usually called 𝜖. This allows to
re-write the simple genetic model in (2.1) as

𝑦 = 𝛽 + 𝑔 + 𝜖 (2.2)

The genetic component 𝑔 can be decomposed into contributions from the finite
number of loci that are influencing the observation 𝑦. In our example dataset
(see Figure 2.1) there are three loci1 that are assumed to have an effect on 𝑦.
Ignoring any interaction effects between the three loci, we can decompose the
overall genetic effect 𝑔 into the some of the genotypic values of each locus. Hence

𝑔 =
𝑘

∑
𝑗=1

𝑔𝑗 (2.3)

1Implicitly, we are treating the SNP-markers to be identical with the underlying QTL. But
based on the fact that we have very many SNPs spread over the complete genome, there will
always be SNP sufficiently close to every QTL that influences a certain trait. But in reality
the unknown QTL affect the traits and not the SNPs.
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where for our example 𝑘 is equal to three2.
Considering all SNP loci to be purely additive which means that we are ignoring
any dominance effects, the genotypic values 𝑔𝑗 at any locus 𝑗 can just take one
of the three values −𝑎𝑗, 0 or +𝑎𝑗 where 𝑎𝑗 corresponds to the 𝑎 value from
the mono-genic model (see Figure 1.4). For our example dataset the genotypic
value for each SNP genotype is given in the following table.

Table 2.1: (#tab:02-flem-‹›figenotypicvalue)Genotypic Values For
All Three SNP-Loci

SNP Locus Genotype Genotypic Value
𝑆𝑁𝑃1 𝐺1𝐺1 𝑎1
𝑆𝑁𝑃1 𝐺1𝐺2 0
𝑆𝑁𝑃1 𝐺2𝐺2 −𝑎1
𝑆𝑁𝑃2 𝐻1𝐻1 𝑎2
𝑆𝑁𝑃2 𝐻1𝐻2 0
𝑆𝑁𝑃2 𝐻2𝐻2 −𝑎2
𝑆𝑁𝑃3 𝐼1𝐼1 𝑎3
𝑆𝑁𝑃3 𝐼1𝐼2 0
𝑆𝑁𝑃3 𝐼2𝐼2 −𝑎3

From the Table ?? we can see that always the allele with subscript 1 is taken
to be that with the positive effect. Combining the information from Table ??
together with the decomposition of the genotypic value 𝑔 in (2.3), we get

𝑔 = 𝑀 ⋅ 𝑎 (2.4)

where 𝑀 is an indicator matrix taking values of −1, 0 and 1 depending on the
SNP marker genotype and 𝑎 is a vector of 𝑎 values. Combining the decomposi-
tion in (2.4) together with the basic genetic model in (2.2), we get

𝑦 = 𝛽 + 𝑀 ⋅ 𝑎 + 𝜖 (2.5)

The result obtained in (2.2) is the fundamental decomposition of the phenotypic
observation 𝑦 into a genetic part represented by the SNP marker information
(𝑀) and an environmental part (𝛽 and 𝜖). The 𝑎 values are unknown an must
be estimated. The estimates of the 𝑎 values will then be used to predict the
GBVs. How this estimation procedure works is described in the next section
2.4.2.

2In reality 𝑘 can be 1.5 ∗ 105 for some commercial SNP chip platforms. When working
with complete genomic sequences, 𝑘 can also be in the order of 3 ∗ 107.
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2.4.2 Statistical Model

When looking at the fundamental decomposition given in the genetic model
presented in (2.5) from a statistics point of view, the model in (2.5) can be
interpreted as fixed linear effects model (FLEM). FLEM represent a class
of linear models where each model term except for the random residual term
is a fixed effect. Furthermore, besides a random error term, the response is
explained by a linear function of the predictor variables.
Using the decomposition given in our genetic model (see equation (2.5)) for our
example dataset illustrated in Figure 2.1, every observation 𝑦𝑖 of animal 𝑖 can
be written as

𝑦𝑖 = 𝑊𝑖 ⋅ 𝛽 + 𝑀𝑖 ⋅ 𝑎 + 𝜖𝑖 (2.6)

where
• 𝑦𝑖 is the observation of animal 𝑖
• 𝛽 is a vector of unknown systematic environmental effects
• 𝑊𝑖 is an indicator row vector linking 𝛽 to 𝑦𝑖
• 𝑎 is a vector of unknown additive allele substitution effects (𝑎 values)
• 𝑀𝑖 is an indicator row vector encoding the SNP genotypes of animal 𝑖

and
• 𝜖𝑖 is the random unknown environmental term belonging to animal 𝑖

In the following section, we write down the definition of a FLEM and compare
it to the statistical model given in (2.6).

2.5 Definition of FLEM

The multiple fixed linear effects model is defined as follows.

Definition 2.1 (Fixed Linear Effects Model). In a fixed linear effects model,
every observation 𝑖 in a dataset is characterized by a response variable and
a set of predictors. Up to some random errors the response variable can be
expressed as a linear function of the predictors. The proposed linear function
contains unknown parameters. The goal is to estimate both the unknown pa-
rameters and the error variance.

2.5.1 Terminology

For datasets where both the predictors and the response variables are on a
continuous scale, which means that they correspond to measured quantities
such as body weight, breast circumference or milk yield, the model is referred
to as multiple linear regression model. Because the statistical model in
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(2.6) contains the SNP genotypes as discrete fixed effects, we are not dealing
with a regression model but with a more general fixed linear effects model.

2.5.2 Model Specification

An analysis of the model given in (2.6) shows that it exactly corresponds to
the definition 2.1. In this equivalence, the observation 𝑦𝑖 corresponds to the
response variable. Furthermore, the unknown environmental term 𝜖 corresponds
to the random residual part in the FLEM. Except for the random residuals the
response variable 𝑦𝑖 is a linear function of the fixed effects which corresponds
to all systematic environmental effects and to all SNP genotype effects.
For the description of how to estimate the unknown parameter 𝛽 and 𝑎 in the
model (2.6), it is useful to combine 𝛽 and 𝑎 into a single vector of unknown
parameters and we call it 𝑏.

𝑏 = [ 𝛽
𝑎 ] (2.7)

Taking the equations as shown in (2.6) for all observations (𝑖 = 1, … , 𝑁) and
expressing them in matrix-vector notation, we get

𝑦 = 𝑋𝑏 + 𝜖 (2.8)

where
• 𝑦 is the vector of 𝑁 observations
• 𝑏 is the vector of all unknown fixed effects
• 𝑋 is the incidence matrix linking the parameters of 𝑏 to 𝑦
• 𝜖 is the vector of random residuals

The incidence matrix 𝑋 in (2.8) can be composed from the matrices 𝑊 and 𝑀
by concatenating the latter two matrices, i.e.,

𝑋 = [ 𝑊 𝑀 ] (2.9)

2.6 Parameter Estimation Using Least Squares

The method of parameter estimation is explained using the simpler case of a
regression model. That means both the predictors and the response variables
are on a continuous scale. As a further simplification, we assume that there is
only one predictor variable and one response variable. The predictor variable
is called 𝑥 and the response variable is called 𝑦. The model is still the same as
shown in (2.8). The matrix 𝑋 has just one column with the measured values of
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the predictor variable and 𝑏 is just a scalar unknown parameter. The vector 𝑦
contains the observed values for the response values.
The goal of the analysis of the simple dataset is to find an estimate of the scalar
𝑏 such that the linear combination of 𝑋 and 𝑏 best explains the values in 𝑦. How
we can find such an estimation procedure that allows us to calculate an estimate
of 𝑏 is explained using a small example data set in the following subsection.

2.6.1 An Example Dataset

A widely use example dataset for such a simple regression analysis in ani-
mal breeding consists of measurements of body weight (BW) and breast
circumference (BC) for a given group of animals.

Table 2.2: Dataset for Regression of Body Weight on Breast Cir-
cumference for ten Animals

Animal Breast Circumference Body Weight
1 176 471
2 177 463
3 178 481
4 179 470
5 179 496
6 180 491
7 181 518
8 182 511
9 183 510

10 184 541

The dataset shown above is taken from Table 9.1 in [Essl, 1987]. One of the
possible reasons for fitting a regression from BW on BC is that the latter is
easier to measure. The measured values of BC can be used to predict BW once
we have determined the regression coefficient. For this prediction, we use BW as
response variable 𝑦 and BC as predictor variable 𝑥. This leads to the regression
model

𝑦 = 𝑥 ∗ 𝑏 + 𝜖 (2.10)

where 𝑦 is the vector of body weights and 𝑥 is the vector of breast circumferences.
𝑏 is a scalar value which is unknown and 𝜖 is the vector of random unknown error
terms. The goal is to determine 𝑏 such that the predictor variable best explains
the response variable. How 𝑏 is determined is explained with the following plot.
In Figure 2.2 the blue points correspond to the data points given by the dataset
shown in Table 2.2. The red line corresponds to the regression line defined by
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Figure 2.2: Regression of Body Weight On Breast Circumference
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the unknown regression parameter 𝑏. The distance between the data points to
the projection in the direction of the 𝑦-axis corresponds to the residual 𝑟. For
a given data point 𝑖, the residual 𝑟𝑖 is computed as

𝑟𝑖 = 𝑦𝑖 − 𝑥𝑖 ∗ ̂𝑏 (2.11)

where 𝑏̂ denotes a concrete estimated value of 𝑏. For a different choice of a value
of 𝑏̂, different values for the residuals 𝑟𝑖 can be computed. Our goal is to find the
value of ̂𝑏 that results in the smallest residuals 𝑟𝑖. In order to avoid cancellation
of positive and negative values of the residuals, the 𝑟𝑖 values are squared and
added. This sum of the squared residuals is used as a measure of how good a
given regression line determined by 𝑏̂ fits a given set of data points. Because we
want to have a good fit this means that the sum of the squared residuals should
be as small as possible.

The method that determines ̂𝑏 such that the sum of the squared residuals is
minimal is called Least Squares. In a general formula with more than one
predictor variables we can write the least squares estimate ̂𝑏𝐿𝑆 as

𝑏̂𝐿𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏||𝑦 − 𝑋𝑏||2 (2.12)

where ||.|| denotes the Euclidean norm. The estimate 𝑏̂𝐿𝑆 can be found by
finding the minimum of ||𝑦 − 𝑋𝑏||2. The minimum of ||𝑦 − 𝑋𝑏||2 is found by
first taking the derivative with respect to 𝑏 and the setting that derivative to 0.
The derivative of ||𝑦 − 𝑋𝑏||2 with respect to 𝑏 can be computed as follows

𝐿𝑆 = ||𝑦 − 𝑋𝑏||2 = (𝑦 − 𝑋𝑏)𝑇 (𝑦 − 𝑋𝑏) = 𝑦𝑇 𝑦 − 𝑦𝑇 𝑋𝑏 − 𝑏𝑇 𝑋𝑇 𝑦 + 𝑏𝑇 𝑋𝑇 𝑋𝑏
(2.13)

The derivative of 𝐿𝑆 with respect to 𝑏 is

𝜕𝐿𝑆
𝜕𝑏 = −𝑦𝑇 𝑋 − 𝑦𝑇 𝑋 + 2 ∗ 𝑏𝑇 𝑋𝑇 𝑋 (2.14)

The minimum is found by setting 𝜕𝐿𝑆
𝜕𝑏 to 0.

𝜕𝐿𝑆
𝜕𝑏 = −𝑦𝑇 𝑋 − 𝑦𝑇 𝑋 + 2 ∗ 𝑏̂𝑇 𝑋𝑇 𝑋 = 0 (2.15)

From equation (2.15), we get the so-called least squares Normal Equations
for ̂𝑏.

𝑋𝑇 𝑋 ̂𝑏 = 𝑋𝑇 𝑦 (2.16)
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For a regression model, we know that 𝑋 has full column rank3. That means we
can solve the normal equations (2.16) explicitly for ̂𝑏.

𝑏̂ = (𝑋𝑇 𝑋)−1𝑋𝑇 𝑦 (2.17)

Equation (2.17) presents a solution to the estimation problem of the unknown
parameter 𝑏 in the regression problem. There is one additional unknown pa-
rameter that we have not mentioned so far. The regression model contains the
random error terms 𝜖. Because 𝜖 is random, we have to specify the expected
value and the variance. The error terms are deviations of the predicted values
from the observed data points. Hence the expected values 𝐸 [𝜖] must be 0. The
variance 𝜎2 of the error terms is an additional unknown parameter that has to
be estimated from the data. One way of estimating the error variance from the
data is shown in subsection 2.6.2.

2.6.2 Variance of Errors

The least squares procedure itself does not yield an estimate of the error variance
𝜎2. But the estimate of 𝜎2 based on the residuals is often declared to be the
least squares estimate of 𝜎2. The residuals 𝑟𝑖 as defined in (2.11) are
estimates of the error terms 𝜖𝑖. As a matter of fact the residuals can be used to
estimate 𝜎2. This estimate is given by

𝜎2 = 1
𝑛 − 𝑝

𝑛
∑
𝑖=1

𝑟2
𝑖 (2.18)

The factor (𝑛 − 𝑝)−1 in (2.18) is used, because it leads the estimate 𝜎2 to be
unbiased, which means 𝐸 [𝜎2] = 𝜎2.

2.7 Different Types of Linear Regressions

2.7.1 Regression Through The Origin

The regression model as it was proposed in (2.10) for the dataset of body weight
and breast circumference defines a line in the 𝑥 − 𝑦-plane. This line shown
in Figure 2.2. What is not shown in the plot, but what becomes clear from
the model is that the regression line goes through the origin of the coordinate
system. Mathematically the origin is given by 𝑥 = 0 and 𝑦 = 0. In this
regression model, the origin is the fixed point which is on the regression line. The
fixed point together with the estimated regression coefficient 𝑏̂ uniquely define

3In a regression model, all values in the matrix 𝑋 are real values. Hence no column of 𝑋
will be a linear combination of any other columns and therefore 𝑋 has full column rank.
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the regression line. From a geometrical point of view the estimated regression
coefficient defines the slope of the regression line.

2.7.2 Regression With Intercept

Depending on the data analysed with a regression model, it does not make sense
to force the regression line to run through the origin. This can be avoided by
including an additional fixed term in the regression model. This term is called
the intercept. A regression model with an intercept can be written as

𝑦𝑖 = 𝑏0 + 𝑥𝑖 ∗ 𝑏1 + 𝜖𝑖 (2.19)

The term 𝑏0 corresponds to the value of the response variable 𝑦 when the value
of the predictor 𝑥 is 0. Then the fixed point of the regression line is no longer
the origin, but the point 𝑥 = 0 and 𝑦 = 𝑏0. The slope of the regression line is
determined by 𝑏1. In matrix-vector notation the intercept 𝑏0 is added to the
vector of unknown parameters 𝑏 and the design-matrix 𝑋 has to be augmented
by a column of all ones on the left.

2.7.3 Regression With Transformed Predictor Variables

Regression models can also contain different transformations of the predictor
variables. As an example, we can include any higher order polynomial functions
of predictor variables such as

𝑦𝑖 = 𝑏0 + 𝑏1 ∗ 𝑥𝑖 + 𝑏2 ∗ 𝑥2
𝑖 + ⋯ + 𝑏𝑘 ∗ 𝑥𝑘

𝑖 + 𝜖𝑖 (2.20)

Although the model (2.20) contains non-linear functions of the predictors 𝑥𝑖,
the function is still linear in the unknown parameters 𝑏𝑗 (𝑗 = 1, … 𝑘) and hence
the model (2.20) is still a linear regression model.
Transformations of the predictor variables are not restricted to polynomial func-
tions. Many different kinds of transformations are possible. An example is
shown in the following equation

𝑦𝑖 = 𝑏0 + 𝑏1 ∗ 𝑙𝑜𝑔(𝑥𝑖) + 𝑏2 ∗ 𝑠𝑖𝑛(𝜋𝑥𝑖) + 𝜖𝑖 (2.21)

2.8 Predictions

One goal of estimating the regression coefficient was that we want to be able to
predict the response based on concrete values of the predictor variables. For our
example with the body weight and the breast circumference, this means that
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we want to measure the breast circumference of an animal for which we do not
know the body weight. Then based on the estimated regression coefficient, we
want to be able to predict the body weight of that animal.
The computation of the regression coefficient for the dataset shown in Table 2.2
will be the topic of an exercise. But let us assume that we have computed the
value of 𝑏̂, then the predicted value of the body weight 𝑦𝑠 for an animal 𝑠 is
computed based on the measured breast circumference 𝑥𝑠 of animal 𝑠 as follows

𝑦𝑠 = 𝑏̂ ∗ 𝑥𝑠 (2.22)

It has to be noted that the prediction 𝑦𝑠 is only valid, if the measured value
𝑥𝑠 is close to the measured predictors that were used to estimate ̂𝑏. For our
example with body weight and breast circumference, we could not use the same
regression line to predict the body weight for calves, if 𝑏̂ was estimated with
data of adult bulls.

2.9 Regression On Dummy Variables

In a regression model (such as shown in (2.10)) both the response variable and
the predictor variables are continuous variables. Examples of such variables are
body weight and breast circumference which are both measured and the
measurements are expressed as real numbers. In contrast to such a regression
model, the statistical model shown in (2.6) has a continuous response, but the
predictor variables are discrete variables. The predictor variables are assumed
to be genotypes of a certain set of SNP genotypes and hence these genotypes
can only have a fixed number of states. Under the assumption of bi-allelic Loci,
a SNP locus can have just three genotypes and hence the predictor variable that
is used to represent any given SNP-locus can only take three discrete states.
Figure 2.3 shows the difference between a regression model as the one of body
weight on breast circumference and a fixed linear effects model where one
locus has an effect on a quantitative trait. In the left diagram of Figure 2.3
the red line denotes the regression line. This line is meaningful because on
the x-axis and on the y-axis every single point of the red line would be valid
observations. On the x-axis of the diagram on the righthand side, only three
values are possible. In the diagram they are shown as Genotypes 𝐺1𝐺1, 𝐺1𝐺2
and 𝐺2𝐺2. We will see very soon that in our statistical model, they will be
encoded by 1, 0 and −1. The response variable in the diagram on the right of
Figure 2.3 is a continuous random variable, similarly to the regression model
shown in the left diagram. This combination of continuous response variable on
a discrete type of variable lead to the term regression on dummy variables
because the predictor variables are not continuous but just discrete levels of
a certain factor. In this lecture, we are using fixed linear effects model
rather than regression on dummy variables for the same type of model. The
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term of fixed linear effects model was used, because in the next chapter in
Genomic BLUP we are going to introduce mixed linear effects model which are
an extension of the fixed linear effects model used in this chapter.

Figure 2.3: Comparison Between Regression Model And Fixed Linear Effects
Model With An SNP-Locus As A Discrete Predictor Variables

2.9.1 Fixed Linear Effects Model For SNP Data

We are using genetic data and assume that the SNP genotypes have an effect on
a quantitative trait. Our goal is to predict genomic breeding values based on the
information from the SNP genotypes for the quantitative traits. We have seen
that under some simplifying assumptions of additivity of the genetic effects, the
genomic breeding values depend on the absolute value of the genotypic values (𝑎
values) of the homozygous SNP genotypes. Hence all we need to know from our
analysis of the data under a fixed linear effects model are the 𝑎 values for each
SNP locus. The decomposition of the phenotypic observation shown in 2.4.1
under the assumed genetic model tells us that the phenotypic observation can
be explained as a linear function of the genotypic values of the SNP genotypes
plus a random error term. The fact that our genetic model is a fixed linear effects
model that uses phenotypic observations as response and SNP loci as predictors
allows us to set up the following model for an example data set shown in the
following subsection.

2.9.2 Example Data Set With SNP Loci And A Pheno-
typic Observation

We are using the dataset shown in Table 2.3 as an example on how to use a
fixed linear effects model to estimate the genotypic value of the SNP genotypes.



32 CHAPTER 2. FIXED LINEAR EFFECTS MODELS

Table 2.3: Animals With Two SNP Loci Affecting A Quantitative Trait
Animal SNP G Genotypic Value G SNP H Genotypic Value H Observation

1 𝐺1𝐺1 𝑎𝐺 𝐻1𝐻2 0 510
2 𝐺1𝐺2 0 𝐻1𝐻1 𝑎𝐻 528
3 𝐺1𝐺2 0 𝐻1𝐻1 𝑎𝐻 505
4 𝐺1𝐺1 𝑎𝐺 𝐻2𝐻2 −𝑎𝐻 539
5 𝐺1𝐺1 𝑎𝐺 𝐻1𝐻1 𝑎𝐻 530
6 𝐺1𝐺2 0 𝐻1𝐻2 0 489
7 𝐺1𝐺2 0 𝐻2𝐻2 −𝑎𝐻 486
8 𝐺2𝐺2 −𝑎𝐺 𝐻1𝐻1 𝑎𝐻 485
9 𝐺1𝐺2 0 𝐻2𝐻2 −𝑎𝐻 478

10 𝐺2𝐺2 −𝑎𝐺 𝐻1𝐻2 0 479
11 𝐺1𝐺1 𝑎𝐺 𝐻1𝐻2 0 520
12 𝐺1𝐺1 𝑎𝐺 𝐻1𝐻1 𝑎𝐻 521
13 𝐺2𝐺2 −𝑎𝐺 𝐻1𝐻2 0 473
14 𝐺2𝐺2 −𝑎𝐺 𝐻1𝐻2 0 457
15 𝐺1𝐺2 0 𝐻1𝐻1 𝑎𝐻 497
16 𝐺1𝐺2 0 𝐻1𝐻2 0 516
17 𝐺1𝐺1 𝑎𝐺 𝐻1𝐻2 0 524
18 𝐺1𝐺1 𝑎𝐺 𝐻1𝐻2 0 502
19 𝐺1𝐺1 𝑎𝐺 𝐻2𝐻2 −𝑎𝐻 508
20 𝐺1𝐺2 0 𝐻1𝐻2 0 506

Instead of fitting individual effects for the different SNP genotypes to explain
the response variable, we are directly including the genotypic values 𝑎𝐺 and 𝑎𝐻
into the fixed effects linear model. How the genotypic values are related to the
SNP genotypes is also shown in Table 2.3. For all animals in Table 2.3, we can
write the model equations in matrix-vector notation as

𝑦 = 𝑋𝑏 + 𝜖 (2.23)

where 𝑦 is the vector of observations, 𝑏 is a vector of genotypic values plus an
intercept, 𝑋 is a design matrix linking the elements in 𝑏 to 𝑦 and 𝜖 is a vector
of random errors. Writing out the matrices and vectors leads to
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1 1 0
1 0 1
1 0 1
1 1 −1
1 1 1
1 0 0
1 0 −1
1 −1 1
1 0 −1
1 −1 0
1 1 0
1 1 1
1 −1 0
1 −1 0
1 0 1
1 0 0
1 1 0
1 1 0
1 1 −1
1 0 0
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⎥
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⎥
⎥
⎥
⎦
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⎣

𝑏0
𝑎𝐺
𝑎𝐻

⎤⎥
⎦

+ 𝜖 (2.24)

2.9.3 Parameter Estimation In A Fixed Linear Effects
Model

The goal for model (2.23) is to get an estimate for the unknown parameters 𝑏0,
𝑎𝐺 and 𝑎𝐻. In section 2.9.3 we saw how unknown parameters can be estimated
for a regression model using least squares. When applying the least squares
method, we did not make any assumptions about the predictor variables. The
minimization of the sum of the squared residuals can also be applied for the fixed
linear effects model. This minimization leads to the same normal equations

𝑋𝑇 𝑋𝑏(0) = 𝑋𝑇 𝑦 (2.25)

So far everything was identical to the case of the regression model. But when
trying to find a solution for (2.25) we have to account for the different nature
of the design matrix 𝑋. In the regression model this matrix 𝑋 contains real
numbers. In our example of a fixed linear effects model, the matrix 𝑋 just
contains just the three number −1, 0 and 14. The fact that the matrix 𝑋
contains only a few discrete values makes it very likely that 𝑋 does not have
full column rank. That means it is very likely that some columns of 𝑋 can be
expressed as linear combinations of other columns. This linear dependence of
the columns of 𝑋 causes the matrix 𝑋𝑇 𝑋 to be singular and hence the inverse of

4In most other fixed linear effects models, the design matrix contains just 0 and 1.
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𝑋𝑇 𝑋 cannot be computed. Whenever the matrix 𝑋𝑇 𝑋 is singular, the solution
given in (2.17) cannot be computed.
The normal equations in (2.25) are written with the symbol 𝑏(0) to denote that
the equations do not have a single solution 𝑏(0) in the sense that we were able
to compute them in the case of the regression model. In the case where 𝑋𝑇 𝑋
is singular, there are infinitely many solutions 𝑏(0). These solutions can be
expressed as

𝑏(0) = (𝑋𝑇 𝑋)−𝑋𝑇 𝑦 (2.26)

where (𝑋𝑇 𝑋)− stands for a generalized inverse of the matrix 𝑋𝑇 𝑋. A
generalized inverse 𝐺 of a given matrix 𝐴 is defined as the matrix that satisfies
the equation 𝐴𝐺𝐴 = 𝐴. The matrix 𝐺 is not unique. Applying the concept
of a generalized inverse to a system of equations 𝐴𝑥 = 𝑦, it can be shown that
𝑥 = 𝐺𝑦 is a solution, if 𝐺 is a generalized inverse of 𝐴. Because 𝐺 is not unique,
there are infinitely many solutions corresponding to ̃𝑥 = 𝐺𝑦 + (𝐺𝐴 − 𝐼)𝑧 where
𝑧 can be an arbitrary vector of consistent order. Applying these statements
concerning generalized inverses and solutions to systems of equations to (2.26),
it means that 𝑏(0) is not a unique solution to (2.25) because the generalized
inverse (𝑋𝑇 𝑋)− is not unique. As a consequence of that the solution 𝑏(0)

cannot be used as an estimate of the unknown parameter vector 𝑏.
The numeric solution of the analysis of the example dataset given in Table
2.3 is the topic of an exercise. When developing that solution, we will see
that some linear functions of 𝑏(0) can be found which do not depend on the
choice of the generalized inverse (𝑋𝑇 𝑋)−. Such functions are called estimable
functions and can be used as estimates for the respective functions of the
unknown parameter vector 𝑏. Differences between different elements in the
parameter vector 𝑏 are often used as estimable functions. More details about
generalized inverses and estimable functions can be found in [Searle, 1971].
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