
Chapter 3

Genomic Best Linear
Unbiased Prediction
(GBLUP)

In chapter 2 we introduced the fixed linear effects model to estimate additive
genotypic values for SNP-Loci. In most real-world genomic datasets the number
of SNP loci is larger than the number of observations. But from the point of
view of quantitative genetics, we still assume that only a subset of the observed
SNP-Loci is linked to a QTL and could therefore have an estimable effect on our
trait of interest. Hence the original problem of estimating SNP-effect parameter
is extended by a new problem of determining which SNPs are important for the
expression of a given trait of interest.

3.1 Finding Relevant SNP Loci

Unfortunately it is not as easy as it may have seamed when we were looking
at the monogenic model in Figure 1.4. When there are many SNPs that are
observed and that are potentially influencing a trait, the different loci are inter-
acting with each other and the distribution of the different trait values across
the different genotypes is much more blurry. Furthermore when we use real-
world observations of livestock animals these are phenotypic values which are
influenced by many different environmental factors for which the phenotypic
measurements all have to be corrected for.
This new problem of determining which SNP locus is linked to a QTL may sound
like a not so difficult problem. But the number of possible SNP combinations
is quite large. For a given number of 𝑘 SNP loci the possible number of SNP
combinations that might affect a trait is determined by the cardinality of the
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powerset of 𝑘 elements which is in the order of 2𝑘. Typical values of 𝑘 might be
1.5 ∗ 105 and hence the number of possible combinations of any number SNP
loci is a very large number. As a consequence of that a brute force approach
where all possible combinations of SNP loci are tried cannot be used. Figure
3.1 tries to illustrate the problem of selecting important SNPs for a given trait.

Figure 3.1: Finding SNP Loci Important For The Expression Of A Quantitative
Trait

3.2 Stepwise Approach

In fixed linear effects model when the number of predictors is excessively large
it is often desirable to find the subset of predictors that have a relevant effect
on the response variable. Having too many predictors in a model decreases
the power to predict future values of responses. To find a subset of relevant
predictor variables out of a large set of predictors can be done with two step-
wise approaches.

1. Forward selection
2. Backward elimination

In what follows these two approaches are only described very shortly. Due to
some practical problems with these techniques they did not find their way into
the practical analyses of genomic data.
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3.2.1 Forward Selection

The starting point of the forward approach is the empty model with no predictor
variables. In an iterative sequence of steps additional predictors are included
into the model until a pre-defined model quality criterion cannot be improved
any further. As model quality criterion, different quantities can be used. In a
summary output of R’s lm() function, the quantity adjusted 𝑅2 is shown. Al-
ternative quantities are the Mallow 𝐶𝑝 value, the Akaike Information Criterion
(AIC) or Bayes Information Criterion (BIC). The problem with the forward
selection approach is that it is heavily dependent on the starting point, that
means the resulting subset of predictors depends on the predictor with which
we started. Similarly the order in which the predictors are tested can also have
an influence on the final result. These problems make it very difficult to end up
with a stable selection procedure for relevant predictor variables.

3.2.2 Backward Elimination

Backward elimination starts with the full model where the full model contains all
predictor variables. In an iterative procedure smaller models are constructed by
eliminating predictor variables which have a very small effect on the response
variable. This elimination process is continued until a certain model quality
criterion reaches an optimum. This model selection technique is often used in
practical data analyses. But due to the greedy nature of this technique and
with large numbers of predictors it can also be difficult to get stable results.

3.3 Model Selection With Genomic Data

In real-world genomic data analyses, the number of predictors can be as high as
1.5 ∗ 105. Therefore the forward selection approach as described in 3.2.1 cannot
be used because of the above shown problems. Also the backward elimination
approach does not yield a stable procedure for finding the subset of relevant
SNPs. This has several reasons which are shortly described in the following
subsections.

3.3.1 Fitting The Full Model

Fitting the full model with such a high number of predictors leads to the prob-
lem that the design matrix 𝑋 will not have full column rank. The solution of the
least squares normal equation then depends on a generalized inverse (𝑋𝑇 𝑋)− of
𝑋𝑇 𝑋. Generalized inverses are not unique and furthermore for a given general-
ized inverse, there are infinitely many solutions that satisfy the normal equation
coming out of least squares. Instead of the non-unique solutions, we have to
focus on estimable functions of the solutions which are independent of the choice
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of a concrete solution. Although, even if it is possible to fit the full model of
a genomic dataset, applying the backward elimination procedure is very time
consuming and due to its greediness is not expected to result in a stable subset
of relevant SNPs that has an influence on a given trait of interest.

3.4 Mixed Linear Effects Model

Based on the above described problems with the use of the fixed linear effects
model for analyzing genomic data, animal breeders were looking for an alter-
native. In traditional genetic evaluation in animal breeding the BLUP animal
model was used world-wide. The term traditional genetic evaluation
refers to the prediction of breeding values based on phenotypic observation and
pedigree relationships between animals in a given population. When looking
at Figure 1.6 the traditional genetic evaluation is shown on the left side. The
BLUP animal model is a mixed linear effects model where the breeding values
of all animals in the populations are taken as random effects. In most of these
traditional genetic evaluations the number of predicted breeding values exceeds
the number of observations. This is possible due to the BLUP methodology
which uses the variance-covariance matrix between the random effects to dis-
tribute the information of the observations also to predicted breeding values
of animals which do not have any observations. In a BLUP animal model the
variance-covariance matrix is proportional to the numerator relationship matrix
𝐴. We will see later that when using the genomic version of BLUP the matrix
𝐴 will be replaced by its equivalent which is called the genomic relationship
matrix.
Mixed linear effects models can be applied to genomic data using two different
parametrisations. At this point, we are using the terminology proposed by
[Fernando et al., 2016]. In the first approach SNP loci also referred to as markers
are modeled as random effects. These models are called marker effect models
(MEM). In a second parametrisation, breeding values of animals corresponding
to a linear combination of marker effects are modeled as random effects. This
second type of models are referred to as breeding value models (BVM). Figure
3.2 illustrates the difference between the two types of models.
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Figure 3.2: Two Types Of Mixed Linear Effects Models For Genomic Data
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3.4.1 Marker Effect Models

In MEM random effects of markers are directly included in the model. For an
idealized data set we can write

𝑦 = 1𝑛𝜇 + 𝑊𝑞 + 𝑒 (3.1)

where
𝑦 vector of length 𝑛 with observations
𝜇 general mean denoting fixed effects
1𝑛 vector of length 𝑛 of all ones
𝑞 vector of length 𝑚 of random SNP effects
𝑊 design matrix relating SNP-genotypes to observations
𝑒 vector of length 𝑛 of random error terms

The vector 𝑞 contains a separate random effect for each SNP. Because the SNP
effects are random, the expected value 𝐸 [𝑞] and the variance 𝑣𝑎𝑟(𝑞) must be
specified. In general, the random effects are defined as deviations and hence their
expected value is 0. This means 𝐸 [𝑞] = 0. The variance 𝑣𝑎𝑟(𝑞) can be computed
as 𝑣𝑎𝑟(𝑞) = 𝑊𝑊 𝑇 𝜎2

𝑞 . The variance explained by each SNP corresponds to 𝜎2
𝑞

and is assumed to be constant. The variance 𝑣𝑎𝑟(𝑒) of the random error terms
is taken to be 𝑣𝑎𝑟(𝑒) = 𝐼 ∗ 𝜎2

𝑒 where 𝐼 is the identity matrix and 𝜎2
𝑒 is the error

variance.

3.4.2 Breeding Value Models

In a breeding value model a linear combination of all SNP effects are combined
into a random genomic breeding value. This approach is meant when animal
breeders are talking about Genomic BLUP (GBLUP). The mixed linear effects
model in GBLUP corresponds to

𝑦 = 𝑋𝑏 + 𝑍𝑔 + 𝑒 (3.2)

where
𝑦 vector of length 𝑛 with observations
𝑏 vector of length 𝑟 with fixed effects
𝑋 incidence matrix linking elements in 𝑏 to observations
𝑔 vector of length 𝑡 with random genomic breeding values
𝑍 incidence matrix linking elements in 𝑔 to observations
𝑒 vector of length 𝑛 of random error terms

The vector 𝑔 contains the genetic effects of all animals that are genotyped which
means that they have genomic information based on SNP genotypes available.
The expected values of all random effects is assumed to be 0. The variance
𝑣𝑎𝑟(𝑔) of the random genomic breeding values is given by 𝑣𝑎𝑟(𝑔) = 𝐺 ∗ 𝜎2

𝑔.
This expression looks very similar to the variance of the breeding values in the
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traditional BLUP animal model. The matrix 𝐺 is called genomic relationship
matrix (GRM). The variance 𝑣𝑎𝑟(𝑒) of the random error terms is given by
𝑣𝑎𝑟(𝑒) = 𝐼 ∗ 𝜎2

𝑒.

Mostly the older animals for which SNP information is available may have ob-
servations (𝑦) in the dataset. The younger animals may have SNP information
but in most cases no information is available for them. The goal of GBLUP is
to predict genomic breeding values for these animals. Depending on the number
of genotyped animals which is in most cases smaller compared to the number of
SNP loci, the BVM model has the following advantages over the MEM model

1. The length of the vector 𝑔 is 𝑡 which corresponds to the number of geno-
typed animals which in most cases is smaller than the length of the vector
𝑞 which is 𝑚 corresponding to the number of SNPs.

2. Accuracies of genomic breeding values can be computed analogously to
the traditional BLUP animal model. This is analogy of accuracies does
not exist in MEM.

3. BVM can be combined with pedigree-based animal model analysis which
is then referred to as single step approach.

More recently with the number of genotyped animals growing very fast, these
advantages are no longer as important as they used to be.

3.5 Genomic Relationship Matrix

The variance-covariance matrix between the genetic effects 𝑔 in model (3.2) is
proportional to the genomic relationship matrix 𝐺. Analogously to the tradi-
tional BLUP animal model where the variance-covariance matrix of the random
breeding values is proportional to the numerator relationship matrix 𝐴.

3.5.1 Derivation of 𝐺

Because the traditional pedigree-based BLUP animal model is very well re-
spected in animal breeding and the defined model (3.2) produces an analogy
of the genomic evaluation model to the already known animal model the follow-
ing properties of 𝑔 and the genomic relationship matrix 𝐺 are essential.

1. The genetic effects 𝑔 should correspond to a linear combination of the
single SNP-effects 𝑞

2. The genetic effects 𝑔 should be defined as deviations from a common mean,
leading to the expected value 𝐸 [𝑔] = 0.

3. The variance-covariance matrix of the vector 𝑔 corresponds to the product
of 𝐺 times a common variance component 𝜎2

𝑔.
4. The genomic relationship matrix 𝐺 should be similar to the numerator

relationship matrix 𝐴. The diagonal elements should be close to 1 and
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off-diagonal elements of animals that are related should have higher values
than elements between unrelated animals.

The matrix 𝐺 can be computed based on SNP genotypes. In what follows the
material of [VanRaden, 2008] and [Gianola et al., 2009] is used to derive the
genomic relationship matrix.

3.5.2 Linear Combination of SNP Effects

Based on the SNP marker information the marker effects in the vector 𝑞 can
be estimated. Hence, we assume that the vector 𝑞 is known. The property that
𝑔 should be a linear combination of the effects in 𝑞 means that there exists a
matrix 𝑈 for which we can write

𝑔 = 𝑈 ⋅ 𝑞 (3.3)

The matrix 𝑈 is determined based on the desired properties described above.

3.5.3 Deviation

The genetic effects 𝑔 should be defined as deviation from a common basis. Due to
this definition the expected value of the genetic effect is determined by 𝐸 [𝑔] = 0.
This requirement has the following consequences for the matrix 𝑈 .
Let us have a look at the random variable 𝑤 which takes the SNP-genotype
codes in the matrix 𝑊 in the MEM model given in (3.1). Let us further assume
that the SNP loci are in Hardy-Weinberg equilibrium. Then 𝑤 can take the
following values

𝑤 =
⎧{
⎨{⎩

−1 with probability (1 − 𝑝)2

0 with probability 2𝑝(1 − 𝑝)
1 with probability 𝑝2

(3.4)

The expected value of 𝑤 corresponds to

𝐸 [𝑤] = (−1)∗(1−𝑝)2 +0∗2𝑝(1−𝑝)+1∗𝑝2 = −1+2𝑝−𝑝2 +𝑝2 = 2𝑝−1 (3.5)

The matrix 𝑈 is computed as the difference between the matrix 𝑊 and the
matrix 𝑃 where the matrix 𝑃 corresponds to column vectors which have ele-
ments corresponding to 2𝑝𝑗 − 1 where 𝑝𝑗 corresponds to the allele frequency of
the positive allele at SNP locus 𝑗. The following table gives an overview of the
elements of matrix 𝑈 for the different genotypes at SNP locus 𝑗.
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Genotype Genotypic Value Coding in Matrix 𝑈
(𝐺2𝐺2)𝑗 −2𝑝𝑗𝑞𝑗 −1 − 2(𝑝𝑗 − 0.5) = −2𝑝𝑗
(𝐺1𝐺2)𝑗 (1 − 2𝑝𝑗)𝑞𝑗 −2(𝑝𝑗 − 0.5) = 1 − 2𝑝𝑗
(𝐺1𝐺1)𝑗 (2 − 2𝑝𝑗)𝑞𝑗 1 − 2(𝑝𝑗 − 0.5) = 2 − 2𝑝𝑗

Here we assume that for a locus 𝐺𝑗, the allele (𝐺1)𝑗 has a positive effect and
occurs with frequency 𝑝𝑗. We can now verify that with this definition of 𝑈 , the
expected value for a genetic effect determined by the locus 𝑗 corresponds to

𝐸 [𝑔]𝑗 = [(1 − 𝑝𝑗)2 ∗ (−2𝑝𝑗) + 2𝑝𝑗(1 − 𝑝𝑗)(1 − 2𝑝𝑗) + 𝑝2
𝑗 (2 − 2𝑝𝑗)] 𝑞𝑗

= 0 (3.6)

3.5.4 Variance of Genetic Effects

As already postulated the variance-covariance matrix of the genetic effects
should be proportional to the genomic relationship matrix 𝐺.

𝑣𝑎𝑟(𝑔) = 𝐺 ∗ 𝜎2
𝑔 (3.7)

Computing the same variance-covariance matrix based on equation (3.3)

𝑣𝑎𝑟(𝑔) = 𝑈 ⋅ 𝑣𝑎𝑟(𝑞) ⋅ 𝑈𝑇 (3.8)

The variance-covariance matrix of the SNP effects is 𝑣𝑎𝑟(𝑞) = 𝐼 ∗ 𝜎2
𝑞 . Inserting

this into (3.8) we get 𝑣𝑎𝑟(𝑔) = 𝑈𝑈𝑇 𝜎2
𝑞 .

In [Gianola et al., 2009] the variance component 𝜎2
𝑔 was derived from 𝜎2

𝑞 leading
to

𝜎2
𝑔 = 2

𝑚
∑
𝑗=1

𝑝𝑗(1 − 𝑝𝑗)𝜎2
𝑞 (3.9)

Now we combine all relationships for 𝑣𝑎𝑟(𝑔) leading to

𝑣𝑎𝑟(𝑔) = 𝐺 ∗ 𝜎2
𝑔 = 𝑈𝑈𝑇 𝜎2

𝑞 (3.10)

In (3.10), 𝜎2
𝑔 is replaced by the result of (3.9).

𝐺 ∗ 2
𝑚

∑
𝑗=1

𝑝𝑗(1 − 𝑝𝑗)𝜎2
𝑞 = 𝑈𝑈𝑇 𝜎2

𝑞 (3.11)
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Dividing both sides of (3.11) by 𝜎2
𝑞 and solving for 𝐺 gives us a formula for the

genomic relationship matrix 𝐺

𝐺 = 𝑈𝑈𝑇

2 ∑𝑚
𝑗=1 𝑝𝑗(1 − 𝑝𝑗) (3.12)

3.6 How Does GBLUP Work

The genomic relationship matrix 𝐺 allows to predict genomic breeding values
for animals with SNP-Genotypes without any observation in the dataset. This
fact is the basis of the large benefit of genomic selection. As soon as a young
animal is born, its SNP genotypes can be determined and a genomic breeding
value can be predicted. This genomic breeding value is much more accurate
then the traditional breeding value based only on ancestral information.
The BVM model given in (3.2) is a mixed linear effects model. The solution
for the unknown parameters can be obtained by solving the mixed model equa-
tions shown in (3.13). In this form the Inverse 𝐺−1 of 𝐺 and the vector ̂𝑔 of
predicted genotypic breeding values are split into one part corresponding to the
animals with observations and a second part for the animals without phenotypic
information.

⎡⎢
⎣

𝑋𝑇 𝑋 𝑋𝑇 𝑍 0
𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝐺(11) 𝐺(12)

0 𝐺(21) 𝐺(22)
⎤⎥
⎦

⎡⎢
⎣

̂𝑏
̂𝑔1
̂𝑔2

⎤⎥
⎦

= ⎡⎢
⎣

𝑋𝑇 𝑦
𝑍𝑇 𝑦
0

⎤⎥
⎦

(3.13)

The matrix 𝐺(11) denotes the part of 𝐺−1 corresponding to the animals with
phenotypic observations. Similarly, 𝐺(22) stands for the part of the animals
without genotypic observations. The matrices 𝐺(12) and 𝐺(21) are the parts
of 𝐺−1 which link the two groups of animals. The same partitioning holds for
the vector of predicted breeding values. The vector ̂𝑔1 contains the predicted
breeding values for the animals with observations and the vector ̂𝑔2 contains
the predicted breeding values of all animals without phenotypic observations.
Based on the last line of (3.13) the predicted breeding values ̂𝑔2 of all animals
without phenotypic observations can be computed from the predicted breeding
values ̂𝑔1 from the animals with observations.

̂𝑔2 = − (𝐺22)−1 𝐺21 ̂𝑔1 (3.14)

Equation (3.14) is referred to as genomic regression of predicted breeding values
of animals without observation on the predicted genomic breeding values of
animals with observations.
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