
Chapter 5

Bayesian Approaches

5.1 Introduction

In statistics there are two fundamentally different philosophies. The main dif-
ference is in their understanding of the term probability.

• Frequentists understand probability as a measure of how often a certain
event happens.

• Bayesians use probability as a tool to quantify uncertainty about a cer-
tain event. Uncertainty and its perception can vary between different
individuals. This fact has been a big point for criticizing Bayesian ap-
proaches.

All methods that were presented in this course so far are Frequentist concepts.
The relevant differences between Bayesians and Frequentists can be found in
the following points.

• understanding of probability
• differentiation between components of a model and the data
• techniques to estimate parameters.

The following table gives an overview over the differences.

Table 5.1: Differences between Frequentists and Bayesians

Topic Frequentists Bayesians
Probability Ratio between cardinalities of sets Measure of uncertainty
Model and Data Parameter are unknown, data are

known
Differentiation between knowns and
unknowns

Parameter Estima-
tion

ML or REML are used for parame-
ter estimation

MCMC techniques to approximate
posterior distributions55
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5.2 Linear Model

The Bayesian way to estimate parameter is shown with the following simple
linear model1. Let us assume the following linear model for a single observation
𝑦𝑖

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝜖𝑖 (5.1)

where 𝛽0 is the intercept and 𝑥𝑖1 is a predictor variable. The error term is
denoted by 𝜖𝑖 with a variance 𝜎2.

5.2.1 Knowns and Unknowns

In Bayesian statistics, the separation into knowns and unknowns replaces the
differentiation between data and parameter from frequentist statistics. When-
ever there are no missing data the separation into knowns and unknowns corre-
spond to the differentiation into data and parameter. For our model (5.1) the
separation into knowns and unknowns is given in the following table.

Table 5.2: Separation Into Knowns And Unknowns

Term Known Unknown
𝑦𝑖 X
𝑥1 X
𝛽0 X
𝛽1 X
𝜎2 X

5.2.2 Bayesian Parameter Estimation

Bayesians base their estimation of unknowns on the posterior distribution of
the unknowns given the knowns. The posterior distribution is computed using
Bayes Theorem based on the prior distribution of all unknowns and based on
the likelihood. The terms “prior” and “posterior” are to be understood relative
to the point in time where the data to be analysed was collected. This concept
is shown in Figure 5.1.
For the linear model (5.1), we define the vector 𝛽 as

𝛽 = [ 𝛽0
𝛽1

] .

1In Bayesian statistics there is no separation into fixed and random effects. Hence, we call
this model just linear model.
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Figure 5.1: Distinctions between Prior and Posterior in Bayesian Statistics
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The observations are collected in the vector 𝑦. For this simple example, we
assume that the variance 𝜎2 is known2. In Bayesian statistics the estimate
of the unknown 𝛽 is based on the posterior distribution 𝑓(𝛽|𝑦). Using Bayes
Theorem, the posterior distribution can be written as

𝑓(𝛽|𝑦) = 𝑓(𝛽, 𝑦)
𝑓(𝑦)

= 𝑓(𝑦|𝛽)𝑓(𝛽)
𝑓(𝑦)

∝𝑓(𝑦|𝛽)𝑓(𝛽) (5.2)

In equation (5.2) the posterior distribution 𝑓(𝛽|𝑦) is expressed as a product
of the prior distribution 𝑓(𝛽) and the likelihood 𝑓(𝑦|𝛽). The factor 𝑓(𝑦)−1

corresponds to the normalizing constant and is not of further interest to us.
Hence in the final result, the posterior distribution is given as a proportionality
relation.

The posterior distribution 𝑓(𝛽|𝑦) can in many cases not be expressed explicitly.
For a long time this has been a problem restricting the use of Bayesian meth-
ods. Two important developments have contributed important solutions to this
problem.

1. In [Besag, 1974], it was shown that every posterior distribution can be
expressed in terms of their full conditional distribution. For our example
of the linear model (5.1), the full conditional distributions are: (i) the
conditional distribution of 𝛽0 given all other parameters, hence 𝑓(𝛽0|𝛽1, 𝑦)
and (ii) the conditional distribution of 𝛽1 given all other parameters which
corresponds to 𝑓(𝛽1|𝛽0, 𝑦).

2. The second important development consists of the development of efficient
pseudo-random number generators that are easy to use on computers.

5.3 Gibbs Sampler

The implementation of the above two mentioned developments has lead to a
procedure that is referred to as the Gibbs Sampler. Most of the times [Ge-
man and Geman, 1984] is given credit for a first application of the described
parameter estimation technique. When the Gibbs Sampling technique is applied
to a simple linear model, the following procedure can be derived. In general, a
data analysis with the Gibbs Sampler can always be done by going through the
following steps.

2As a consequence, 𝜎2 is omitted from all subsequent derivations.
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1. Determine the prior distributions for the unknowns
2. Determine the likelihood
3. Determine the full conditional distributions.

5.3.1 Prior Distributions

In our example of the simple linear model, the prior distribution corresponds to
𝑓(𝛽). In most cases when a certain type of dataset is analysed for the first time,
there is no prior information about the unknowns available. In such a case an
uninformative prior is chosen. That means 𝑓(𝛽) is chosen as a constant. For our
example, we would use an uninformative prior for 𝛽 and hence, we set 𝑓(𝛽) = 𝑐
where 𝑐 is a constant.

A well established alternative to uninformative priors are prior distributions of
unknowns that have been used in many data analyses. As a result such prior
distributions can be considered as de-facto standard due to their wide-spread
usage.

5.3.2 Likelihood

Similarly to frequentist statistics, the likelihood is defined as the conditional
distribution 𝑓(𝑦|𝛽) of the data 𝑦 given the parameter 𝛽. In the case where not
data are missing, the Bayesian likelihood is the same.

5.3.3 Full Conditional Distribution

With full conditional distributions, we mean that for every unknown, the condi-
tional distribution of that unknown given everything else has to be determined.
In our example of the simple linear model, there are two unknowns 𝛽0 and 𝛽1.
Hence, we have two full conditional distributions. Assuming that the data 𝑦
follow a normal distribution, the full conditional distribution can be written as
shown in the following table.

Unknown full conditional resulting distribution
𝛽0 𝑓(𝛽0|𝛽1, 𝑦) 𝒩 ( ̂𝛽0, 𝑣𝑎𝑟( ̂𝛽0))
𝛽1 𝑓(𝛽1|𝛽0, 𝑦) 𝒩 ( ̂𝛽1, 𝑣𝑎𝑟( ̂𝛽1))

Based on a series of computations not shown here the full conditional distribu-
tions can be converted into the resulting distributions. The symbol 𝒩 stands for
normal distribution where the first argument is the mean and the second argu-
ment is the variance. To compute the mean and the variance that are included
in the full conditional distributions, the model (5.1) has to be re-formulated as
follows.
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𝑦 = 1𝛽0 + 𝑥𝛽1 + 𝜖 (5.3)

The model (5.3) is now written such that we have a new linear model with 𝛽0
as its only parameter. This means

𝑤0 = 1𝛽0 + 𝜖 (5.4)

with 𝑤0 = 𝑦 − 𝑥𝛽1. The least squares estimate ̂𝛽0 can be written as

̂𝛽0 = (1𝑇 1)−11𝑇 w0 (5.5)

The variance of ̂𝛽0 is

𝑣𝑎𝑟( ̂𝛽0) = (1𝑇 1)−1𝜎2 (5.6)

What was shown for 𝛽0 can also be done for 𝛽1.

̂𝛽1 = (x𝑇 x)−1x𝑇 w1 (5.7)

where w1 = y − 1𝛽0

𝑣𝑎𝑟( ̂𝛽1) = (x𝑇 x)−1𝜎2 (5.8)

5.3.4 Implementation Of The Gibbs Sampler

The Gibbs Sampler is implemented by repeated drawing of random samples
from the full conditional distributions. That means, we use starting values
for all unknowns. For 𝛽0 and 𝛽1 we use 0 as a starting value. In the second
step, we compute the expected value and the variance for the full conditional
distributions and we draw a random sample from this distribution. The random
sample are then used for the computation of the moments of the full conditional
distributions in the next round. This procedure of computing expectations and
variance of the full conditional distributions and drawing random samples from
these distributions is repeated about 10000 times. All drawn samples for 𝛽0 and
𝛽1 are stored. From the drawn sample, we compute the mean and the standard
deviation. These are used as representatives of Bayesian parameter estimates
and standard deviation of these estimates.

The following R code chunk gives an implementation of the Gibbs Sampler
for the unknowns 𝛽0 and 𝛽1. For reasons of simplicity 𝜎2 was assumed to be
constant with a value of 𝜎2 = 1.
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# ### starting values for beta0 and beta1
beta <– c(0, 0)
# ### set the number of iterations
niter <– 10000
# ### initialize the vector of results
meanBeta <– c(0, 0)
### # loop over iterations
for (iter in 1:niter) {

# get expected value and variance for
# full conditional of beta_0
w <– y - X[, 2] * beta[2]
x <– X[, 1]
xpxi <– 1/(t(x) %*% x)
betaHat <– t(x) %*% w * xpxi
# ### draw random value for beta0
beta[1] <– rnorm(1, betaHat, sqrt(xpxi))
# expected valuea nd variance for beta1
w <– y - X[, 1] * beta[1]
x <– X[, 2]
xpxi <– 1/(t(x) %*% x)
betaHat <– t(x) %*% w * xpxi
# ### new random number for beta1
beta[2] <– rnorm(1, betaHat, sqrt(xpxi))
meanBeta <– meanBeta + beta

}
# ### Output of results
cat(sprintf("Achsenabschnitt = %6.3f \n", meanBeta[1]/iter))
cat(sprintf("Steigung = %6.3f \n", meanBeta[2]/iter))

The application of this procedure to a real data set will be the topic of an
exercise.
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