
Chapter 5

Variance Components
Estimation

In applied prediction of breeding values using BLUP animal models, variance
components for all random effects are required as input. These variance com-
ponents must be estimated from the data. In more detail, given the assumed
linear mixed effect model

𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒 (5.1)

where 𝑦 is a vector of length 𝑁 of observations, 𝑏 is a vector of length 𝑝 of fixed
effects, 𝑢 is a vector of length 𝑞 of random breeding values and 𝑒 is a vector of
length 𝑁 of random errors. The matrices 𝑋 and 𝑍 are design matrices linking
the corresponding effects to the observations. As part of the model definition,
the variances of the random effects are defined as

𝑣𝑎𝑟(𝑢) = 𝐴𝜎2
𝑢

𝑣𝑎𝑟(𝑒) = 𝐼𝜎2
𝑒 (5.2)

In (5.2) 𝜎2
𝑢 and 𝜎2

𝑒 are the variance components that must be estimated from
the data. The material presented in this chapter is based on [Essl, 1987] and
[Searle et al., 1992] and it shows different methods how variance components
for different models can be estimated.

5.1 Estimation Of Genetic Components

For each trait that should be considered in an aggregate genotype, the first thing
to be analysed is whether the observed variability in the phenotypic values of
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40 CHAPTER 5. VARIANCE COMPONENTS ESTIMATION

the trait can be partly explained by a genetic component. Because only traits
with a detectable genetic component can be used for improving a population on
the genetic level. The genetic component quantifies the part of the phenotypic
variability which is passed from parents to offspring. Hence from a livestock
breeding point of view, the ratio between the genetic variability (quantified by
𝜎2

𝑢) and the phenotypic variability (measured by 𝜎2
𝑝) is important and is termed

as heritability (ℎ2).

ℎ2 = 𝜎2
𝑢

𝜎2𝑝
(5.3)

One first method that we want to introduce is based on the very well-known
statistical technique called analysis of variance (ANOVA). ANOVA is shown
in the next subsection for a simple application of estimating the repeatability.
Later this can be generalized to the estimation of the variability due to genetic
components.

5.2 Estimation Of Repeatability

The term repeatability indicates how similar repeated measurements of the
same quantity are. For example, if we measure the same trait on any given
animal multiple times, the measurements are expected to vary. But because the
measurements are done on the same animal, the variability is probably smaller
compared to measurements from different animals. This phenomenon can be
quantified by a ratio of variance components which is called repeatability.
The computation of the repeatability is shown using the following example
dataset from 10 randomly selected bulls. From each bull the shoulder height is
measured three times.

Table 5.1: Repeated Measurements of Shoulder Height in cm

Bull M1 M2 M3
1 135 136 134
2 129 130 128
3 135 133 136
4 127 127 125
5 126 129 129
6 128 129 128
7 127 132 130
8 129 128 125
9 126 125 127

10 132 131 134
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Now we want to check whether the measurements for the same bull have a
smaller variability compared to measurements from different bulls. We first
create a plot which might already give us some indications.
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Figure 5.1: Repeated Measurements of Shoulder Height for Ten Bulls

From Figure 5.1 alone, it is difficult to say whether measurements for the same
animal are more similar than measurements from different animals. We use the
following model to provide a quantitative answer for the previously formulated
question.

𝑦𝑖𝑗 = 𝜇 + 𝑡𝑖 + 𝜖𝑖𝑗 (5.4)

where
𝑦𝑖𝑗 measurement 𝑗 of animal 𝑖
𝜇 expected value of 𝑦
𝑡𝑖 deviation of 𝑦𝑖𝑗 from 𝜇 attributed to animal 𝑖
𝜖𝑖𝑗 measurement error

5.2.1 Estimation

Given the definition of 𝑡𝑖 and 𝜖𝑖𝑗 as random effects, the following relationships
hold
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• 𝐸(𝑡𝑖) = 0
• 𝜎2

𝑡 = 𝐸(𝑡2
𝑖 ): variance component of total variance (𝜎2

𝑦) which can be
attributed to the 𝑡-effects

• 𝐸(𝜖𝑖𝑗) = 0
• 𝜎2

𝜖 = 𝐸(𝜖2
𝑖𝑗): variance component attributed to 𝜖-effects

• 𝜎2
𝑦 = 𝜎2

𝑡 + 𝜎2
𝜖

The repeatability 𝑤 is defined as the following ratio between variance compo-
nents

𝑤 = 𝜎2
𝑡

𝜎2
𝑡 + 𝜎2𝜖

(5.5)

The variance components 𝜎2
𝑡 and 𝜎2

𝜖 are estimated using an analysis of variance.
The result of such an analysis is shown in the following table.

## Df Sum Sq Mean Sq F value Pr(>F)
## Bull 9 286.7 31.85 13.85 8.74e-07 ***
## Residuals 20 46.0 2.30
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Based on the theory of analysis of variance the expected values of the mean sum
of squares can be equated to the following variance components.

Effect 𝐸(𝑀𝑒𝑎𝑛𝑆𝑞)
Bull 𝜎2

𝜖 + 𝑛 ∗ 𝜎2
𝑡

Error 𝜎2
𝜖

Total 𝜎2
𝜖 + 𝑁−𝑛

𝑁−1 ∗ 𝜎2
𝑡

where 𝑛 is the number of measurement per bull and 𝑁 is the total number of
measurements.

The numeric values of the compute Mean Sq values are now taken as estimates
for the respective variance components. Therefore

�̂�2
𝜖 = 2.3

and

�̂�2
𝑡 = 31.85 − 2.3

3 = 9.85

The estimated repeatability can now be computed as

�̂� = �̂�2
𝑡

�̂�2
𝑡 + �̂�2𝜖

= 0.81
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5.3 Estimation Of Sire Variance

The technique of estimating variance components using ANOVA can also be
applied to a data set where offspring performance records are grouped by their
sires using a sire model. From the statistical point of view a sire model is a linear
mixed effects model for each observation, the effect of the sire is expressed by a
random effect. In matrix vector notation this model can be written as

𝑦 = 𝑋𝑏 + 𝑍𝑠 + 𝑒 (5.6)

where 𝑦 is a vector of length 𝑁 of observations, 𝑏 is a vector of length 𝑝 of fixed
effects, 𝑠 is a vector of length 𝑟 with random sire effects and 𝑒 is a vector of
length 𝑁 of random error terms. The matrices 𝑋 and 𝑍 are incidence matrices
for 𝑏 and 𝑠, linking the respective effects to the observations. An example of
such a data set is used in Problem 1 of Exercise 2.
The variance component 𝜎2

𝑠 for the random sire component 𝑠 is estimated the
same way as shown in subsection 5.2 using an ANOVA table. For the sire model
the ANOVA table has the following structure

Effect Degrees of Freedom Sum Sq Mean Sq 𝐸(𝑀𝑒𝑎𝑛 𝑆𝑞)
Sire (𝑠|𝑏) 𝑟 − 1 𝑆𝑆𝑄(𝑠|𝑏) 𝑆𝑆𝑄(𝑠|𝑏)/(𝑟 − 1) 𝜎2

𝑒 + 𝑘 ∗ 𝜎2
𝑠

Residual (𝑒) 𝑁 − 𝑟 𝑆𝑆𝑄(𝑒) 𝑆𝑆𝑄(𝑒)/(𝑁 − 𝑟) 𝜎2
𝑒

where

𝑆𝑆𝑄(𝑠|𝑏) = 𝑆𝑆𝑄(𝑠𝑏) − 𝑆𝑆𝑄(𝑏)

𝑆𝑆𝑄(𝑠𝑏) =
𝑟

∑
𝑖=1

⎡⎢
⎣

(
𝑛𝑖

∑
𝑗=1

𝑦𝑖𝑗)
2

/𝑛𝑖⎤⎥
⎦

𝑆𝑆𝑄(𝑏) = (
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑦𝑖𝑗)
2

/𝑁

𝑆𝑆𝑄(𝑒) = 𝑆𝑆𝑄(𝑦) − 𝑆𝑆𝑄(𝑠𝑏)

𝑆𝑆𝑄(𝑦) =
𝑟

∑
𝑖=1

𝑛𝑖

∑
𝑗=1

𝑦2
𝑖𝑗

𝑘 = 1
𝑟 − 1 [𝑁 −

∑𝑟
𝑖=1 𝑛2

𝑖
𝑁 ]
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with 𝑟 the number of sires and 𝑛𝑖 the number of progeny for sire 𝑖.
The numeric computation of estimating 𝜎2

𝑠 and 𝜎2
𝑒 is the topic of Problem 1 of

Exercise 2. The dataset that is used in Exercise 2 is a simplified version where
only certain genetic relationships occur and where the number of environmen-
tal effects are kept at a very low number. To address the higher complexity of
real-world datasets obtained in the field, other methods have been developed.
Furthermore the ANOVA-based techniques when applied to real data can pro-
duce negative estimates for variance components. Because variance components
are on a quadratic scale, they cannot be negative and from negative variances,
the standard deviations are not defined in the scope of real numbers. Hence
negative variance component estimates are outside of the parameter domain.

5.4 Development Of Further Methods

In this subsection, we focus on methods which are still used today. The currently
used methods for variance components estimation are either based on Likelihood
approaches or are the result of some Bayesian procedure.

5.4.1 Maximum Likelihood

The first maximum likelihood approach to estimate variance components for
linear mixed effects models was developed by [Hartley and Rao, 1967]. As the
term maximum likelihood implies it, the presented method is based on the
likelihood 𝐿 where 𝐿 is defined as

𝐿(𝜃) = 𝑓(𝑦|𝜃) (5.7)

where 𝜃 is the vector of all unknown parameters to be estimated. For the linear
mixed effect model

𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒

and under the assumption of the data being normally distributed, [Hartley and
Rao, 1967] specify 𝐿 as

𝐿(𝜃) = (2𝜋)−1/2𝑛𝜎−𝑛|𝐻|−1/2 ∗ 𝑒𝑥𝑝 {− 1
2𝜎2 (𝑦 − 𝑋𝑏)𝑇 𝐻−1(𝑦 − 𝑋𝑏)} (5.8)

where 𝑣𝑎𝑟(𝑦) = 𝐻𝜎2 = 𝑍𝑇 𝐺𝑍 + 𝑅 with 𝑣𝑎𝑟(𝑢) = 𝐼𝜎2
𝑢 and 𝑣𝑎𝑟(𝑒) = 𝑅 = 𝐼𝜎2.

The maximum likelihoods for 𝜎2
𝑢 and 𝜎2 are the values that maximize the

function likelihood function 𝐿. It has to be noted that in (5.8) not only the
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variance components, but also the fixed effects 𝑏 are unknown. These must also
be estimated from the data.
The maximization of 𝐿 is done by taking the partial derivatives of 𝜆 = 𝑙𝑜𝑔𝐿
with respect to all unknown parameters. Then these partial derivatives are set
to 0 and the resulting solutions are taken as maximum likelihood estimates.
The problem with the just described maximum likelihood approach is that the
unknown fixed effects 𝑏 have to be estimated at the same time. As a consequence
of that the maximum likelihood estimates of the variance components depend on
𝑏. This is considered as an undesirable property. The solution for this problem
was developed by [Patterson and Thompson, 1971] and is called Restricted
Maximum Likelihood (REML). In REML the observations 𝑦 are transformed
as 𝑆𝑦 and 𝑄𝑦 with the following properties

(i) The matrix 𝑆 has rank 𝑛 − 𝑡 and the matrix 𝑄 has rank 𝑡
(ii) The result of the two transformations are independent, that means

𝑐𝑜𝑣(𝑆𝑦, 𝑄𝑦) = 0 which is met when 𝑆𝐻𝑄𝑇 = 0
(iii) The matrix S is chosen such that 𝐸(𝑆𝑦) = 0 which means 𝑆𝑋 = 0
(iv) The matrix 𝑄𝑋 is of rank 𝑡, so that every linear function of the elements

of 𝑄𝑦 estimate a linear function of 𝑏.
From (i) and (ii) it follows that the likelihood 𝐿 of 𝑦 is the product of the
likelihoods of 𝑆𝑦 and 𝑄𝑦 that means

𝜆 = 𝜆′ + 𝜆″

Suitable matrices 𝑆 and 𝑄 are given by

𝑆 = 𝐼 − 𝑋(𝑋𝑇 𝑋)−1𝑋𝑇

and

𝑄 = 𝑋𝑇 𝐻−1.

With these transformations, the variance components 𝜎2 and 𝜎2
𝑢 can be esti-

mated by maximizing 𝜆′ which is the logarithm of the likelihood of 𝑆𝑦 and
is independent of any influence of the fixed effects 𝑏. Based on this property,
REML is the de-facto standard for variance components estimation in applied
livestock breeding. The R-package pedigreemm can be used to get estimates for
variance components using either Maximum Likelihood (ML) or REML.

5.5 Bayesian Procedures

Theoretical foundations for using Bayesian methods in animal breeding were
laid by [Gianola and Fernando, 1986]. These foundations spanned more than
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just the topic of variance components. A detailed implementation scheme for a
mixed linear effects model using Gibbs sampling for datasets originating in the
area of livestock breeding was first described by [Wang et al., 1993].

5.5.1 The Gibbs Sampler For The Gaussian Mixed Linear
Model

This subsection summarises the most important results of [Wang et al., 1993].

5.5.1.1 Model

The univariate mixed linear effects model with a vector 𝑏 of 𝑝 fixed effects and
a vector 𝑢 of 𝑞 random breeding values is considered.

𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒

where 𝑦 is a vector of length 𝑛 containing the data. The vector 𝑒 (length 𝑛) is a
vector of random residuals. The matrices 𝑋 (𝑛 × 𝑝) and 𝑍 (𝑛 × 𝑞) are incidence
matrices linking fixed effects and random effects to observations.
The conditional distribution that generates the data is given by

𝑦|𝑏, 𝑢, 𝜎2
𝑒 ∼ 𝒩(𝑋𝑏 + 𝑍𝑢, 𝐼𝜎2

𝑒)
where 𝐼 is a 𝑛×𝑛 Identity matrix and 𝜎2

𝑒 is the variance of the random residuals.

5.5.1.2 Prior Distributions

In a Bayesian analysis all unknowns must be assigned a prior distribution. In
our case of the mixed linear effects model the unknowns are 𝑏, 𝑢, 𝜎2

𝑒 and 𝜎2
𝑢.

Usually flat priors are assumed for the fixed effects 𝑏. Hence

𝑝(𝑏) ∝ 𝑐
where 𝑐 is a constant that does not depend on 𝑏. Further, the random effect 𝑢
are assumed to follow a normal distribution, i.e.,

𝑢|𝐺, 𝜎2
𝑢 ∼ 𝑁(0, 𝐺 ∗ 𝜎2

𝑢)

where 𝜎2
𝑢 is the variance of the prior distribution of 𝑢 and 𝐺 is a known ma-

trix. In the case of livestock breeding, 𝐺 is the additive numerator relationship
matrix.
The priors of the variance components 𝜎2

𝑒 and 𝜎2
𝑢 were assumed to be indepen-

dent scaled inverted chi-square (𝜒2) distributions such that
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𝑝(𝜎2
𝑒|𝜈𝑒, 𝑠2

𝑒) ∝ (𝜎2
𝑒)−𝜈𝑒/2−1𝑒𝑥𝑝(−1

2𝜈𝑒𝑠2
𝑒/𝜎2

𝑒)

and

𝑝(𝜎2
𝑢|𝜈𝑢, 𝑠2

𝑢) ∝ (𝜎2
𝑢)−𝜈𝑢/2−1𝑒𝑥𝑝(−1

2𝜈𝑢𝑠2
𝑢/𝜎2

𝑢)

The quantities 𝜈𝑒, 𝜈𝑠, 𝑠2
𝑒 and 𝑠2

𝑢 are called hyper-parameters and must either
be assumed based on experience from previous analyses or based on reasonable
assumptions.

5.5.1.3 Joint Posterior Density

First, we have to introduce some additional notation. Let

𝜃𝑇 = (𝑏𝑇 , 𝑢𝑇 ) = (𝜃1, 𝜃2, … , 𝜃𝑁)

with 𝑁 = 𝑝 + 𝑞. The vector 𝜃 without the 𝑖𝑡ℎ element 𝜃𝑖 is denoted by 𝜃−𝑖
where

𝜃−𝑖 = (𝜃1, 𝜃2, … , 𝜃𝑖−1, 𝜃𝑖+1, … , 𝜃𝑁)

Further, let

𝑠𝑇 = (𝑠2
𝑢, 𝑠2

𝑒)

and

𝜈𝑇 = (𝜈𝑢, 𝜈𝑒)

The joint posterior distribution can be written as

𝑝(𝜃, 𝜎2
𝑢, 𝜎2

𝑒|𝑦, 𝑠, 𝜈) ∝ 𝑝(𝜃) ∗ 𝑝(𝜎2
𝑢|𝜈𝑢, 𝑠2

𝑢) ∗ 𝑝(𝜎2
𝑒|𝜈𝑒, 𝑠2

𝑒) ∗ 𝑝(𝑦|𝜃, 𝜎2
𝑒)

The above determined distributions can now be plugged into the joint posterior.
The result of this is not shown here. The joint posterior is then used to deter-
mine the fully conditional densities which are the building blocks of the Gibbs
sampler.
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5.5.1.4 Fully Conditional Posterior Densities

Fully conditional densities for each of the unknown components are determined
from the joint posterior distribution by regarding all other components as known.
Let the matrix 𝑊 = 𝑤𝑖𝑗 with 𝑖, 𝑗 = 1, … , 𝑁 and the vector 𝑟 = 𝑟𝑖 with 𝑖 =
1, … 𝑁 be the coefficient matrix and the right-hand side of the mixed model
equations respectively, then the conditional density of each element 𝜃𝑖 in the
vector 𝜃 follows a normal distribution with

𝜃𝑖|𝑦, 𝜃−𝑖, 𝜎2
𝑢, 𝜎2

𝑒, 𝑠, 𝜈 ∼ 𝒩( ̃𝜃𝑖, ̃𝑣𝑖)
where ̃𝜃𝑖 = (𝑟𝑖 − ∑𝑁

𝑗=1,𝑗≠𝑖 𝑤𝑖𝑗𝜃𝑗)/𝑤𝑖𝑖 and ̃𝑣𝑖 = 𝜎2
𝑒/𝑤𝑖𝑖.

The conditional posterior density of 𝜎2
𝑒 corresponds to

𝜎2
𝑒|𝑦, 𝜃, 𝜎2

𝑢, 𝑠, 𝜈 ∼ ̃𝜈𝑒 ̃𝑠𝑒
2𝜒−2

̃𝜈𝑒

which corresponds to a scaled inverted chi-square distribution. The parameters
of the above distribution are defined as

̃𝜈𝑒 = 𝑛 + 𝜈𝑒

and

̃𝑠𝑒
2 = [(𝑦 − 𝑋𝑏 − 𝑍𝑢)𝑇 (𝑦 − 𝑋𝑏 − 𝑍𝑢) + 𝜈𝑒𝑠2

𝑒] / ̃𝜈𝑒

Analogously, the conditional posterior density of 𝜎2
𝑢 can be derived as

𝜎2
𝑢|𝑦, 𝜃, 𝜎2

𝑒, 𝑠, 𝜈 ∼ ̃𝜈𝑢 ̃𝑠𝑢
2𝜒−2

̃𝜈𝑢

with

̃𝜈𝑢 = 𝑞 + 𝜈𝑢

and

̃𝑠𝑢
2 = [𝑢𝑇 𝐺−1𝑢 + 𝜈𝑢𝑠2

𝑢] / ̃𝜈𝑢

5.5.1.5 Implementation of the Gibbs Sampler

The above specified fully conditional posterior densities are used to draw in turn
for every unknown component a random number from the respective specified
conditional posterior distribution. The sampled random numbers are stored for
making inferences about the unknown components in the statistical model. One
example inference consists of the Bayesian estimate of a given unknown. The
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Bayesian estimate is computed from the means of the random samples that were
drawn using the Gibbs sampler.

5.5.2 Practical Consideration

Because the availability of widely used and tested software implementing
Bayesian procedures is limited, these procedures are not used in practical
livestock breeding.
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