Applied Statistical Methods – Exercise 1

Peter von Rohr

2020-02-24

Problem 1: Linear Regression

Use the example dataset from the course notes which is used to demonstrate how to fit a regression of the response variable body weight (BW) on the predictor variable breast circumference (BC). The data is shown in the table below.

Table 1: Dataset for Regression of Body Weight on Breast Circum-
ference for ten Animals

Animal	Breast Circumference	Body Weight
1	176	471
2	177	463
3	178	481
4	179	470
5	179	496
6	180	491
7	181	518
8	182	511
9	183	510
10	184	541

Your Tasks

- Compute the regression coefficient using matrix computations. Use the function solve() in R to compute the inverse of a matrix.
- Verify your results using the function lm in R.

Problem 2: Breeding Values

During the lecture the computation of the breeding values for a given genotype was shown for a completely additive locus which means the genotypic value d of the heterozygous genotypes is 0. In this exercise, we want to compute the general solution for the breeding values of all three genotypes under a monogenic model. We are given a single locus G with two alleles G_1 and G_2 which are closely linked to a QTL for a trait of interest. We assume that the population is in Hardy-Weinberg equilibrium at the given locus G. The allele frequencies are

AlleleFrequency
$$G_1$$
 p

$G_2 \qquad q$	
----------------	--

Allele G_1 is the one with a positive effect on the trait of interest. The genotypic values are given in the following table.

Genotype	Value
$G_1G_1 \\ G_1G_2 \\ G_2G_2$	$a \\ d \\ -a$

Your Task

- Compute the breeding values for all three genotypes G_1G_1 , G_1G_2 and G_2G_2 .
- Verify the results presented in the lecture by setting d = 0 in the breeding values you computed before.

Problem 3: Linkage Between SNP and QTL

In a population of breeding animals, we are given a trait of interest which is determined by a QTL Q on chromosome 1. QTL Q is modelled as a bi-allelic QTL with alleles Q_1 and Q_2 . Furthermore we have genotyped our population for two SNPs R and S with two alleles each. One of the SNPs is on chromosome 1 and is closely linked to Q. The other SNP is on chromosome 2 and is unlinked. Figure 1 shows the situation in a diagram.

Based on the following small dataset, determine which of the two SNPs R and/or S is linked to QTL Q.

From the above table it might be difficult to decide which SNP is linked to the QTL. Plotting the data may help. Showing the observations as a function of the genotypes leads to Figure 2.

Your Tasks

- Determine which of the two SNPs R or S is closely linked to the QTL
- Estimate a value for a obtained based on the data
- Try to fit a linear model through the genotypes that SNP which is linked to the QTL using the lm() function. The genotype data is available from

https://charlotte-ngs.github.io/GELASMSS2020/ex/w02/asm_w02_ex01_p02_genodatafile.csv

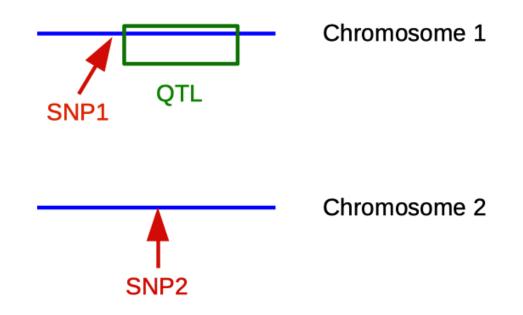


Figure 1: Linkage Between an SNP and a QTL and an independent SNP on a different Chromosome

SNP R	SNP S	Observation
R_2R_2	S_1S_1	23.17
R_2R_2	S_2S_2	-27.04
R_1R_2	S_1S_2	-2.79
$R_1 R_2$	S_2S_2	-19.54
$R_1 R_2$	S_2S_2	-24.05
$R_1 R_2$	S_1S_1	25.84
R_1R_2	S_1S_2	-0.36
R_1R_1	S_2S_2	-23.34
R_2R_2	S_1S_2	1.38
$R_1 R_1$	S_1S_2	-1.60
$R_1 R_2$	S_1S_2	-2.97
$R_2 R_2$	S_1S_2	-1.39

Table 4: Dataset showing linkage between SNP and QTL

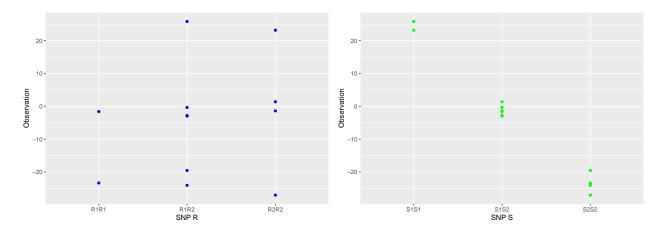


Figure 2: Observations Grouped by SNP Genotypes