Model Selection

Peter von Rohr

Last week: 20.04.2020 2 sides in breeding program: 1. economic evaluation 2. prediction of breeding values using statistical modelling

Why Statistical Modelling?

Some people believe, they do not need statistics. For them it is enough to look at a diagram

Statistical Modelling Because

Two types of dependencies between physical quantities

no sources of uncertainty

- 1. deterministic
- 2. stochastic

Statistical Model

- stochastic systems contains many sources of uncertainty
- statistical models can handle uncertainty
- components of a statistical model
 - response variable y observed phenotypes
 - predictor variables x_1, x_2, \ldots, x_k fixed effects and random breeding
 - error term e

values

• function m(x)

statistical model

How Does A Statistical Model Work?

- predictor variables x₁, x₂,..., x_k are transformed by function m(x) to explain the response variable y
- uncertainty is captured by error term.
- as a formula, for observation i

Which function m(x)?

class of functions that can be used as m(x) is infinitely large
 restrict to linear functions of predictor variables

Which predictor variables?

 Question, about which predictor variables to use is answered by model selection

predictor variables: x_1, x_2, ..., x_k

Why Model Selection

with respect to explaining the differences in the response variables

- Many predictor variables are available
- Are all of them relevant?
- What is the meaning of relevant in this context?

Example Dataset

random numbers = non-meaningful

Animal	Breast Circumference	Body Weight	RandPred
1	176	471	183
2	177	463	178
3	178	481	182
4	179	470	178
5	179	496	178
6	180	491	178
7	181	518	183
8	182	511	178
9	183	510	181
10	184	541	183
	predictor = mea	aningful	response va /_i

No Relevance of Predictors

random pattern

Relevance of Predictors

pattern: points all grouped around regression line

Fitting a Regression Model

```
##
## Call:
## lm(formula = `Body Weight` ~ RandPred, data = tbl_reg_aug)
##
                                                   Low Adj. R-sq ==>
## Residuals:
##
      Min
                10 Median
                                30
                                                   Model does not explain
                                       Max
## -35,574 -20,200 7,236
                            11.519
                                    34,426
                                                   a high rate of variation
##
                                                   of response variables
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
##
  (Intercept) <u>-236.775 608.880</u> -0.389
                                              0.708
## RandPred
                  4.062
                             3.379
                                     1.202
                                              0.264
##
## Residual_standard error: 24.27 on 8 degrees of freedom
## Multiple R-squared: 0.153, Adjusted R-squared: 0.04716
## F-statistic: 1.445 on 1 and 8 DF, p-value: 0.2636
```

std. error has about the same magnitude as the estimate ==> problem

Fitting a Regression Model II

```
##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl reg aug)
##
## Residuals:
##
       Min
                10 Median
                                 30
                                         Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
                         Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                       -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287
```

Multiple Regression

```
##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference` + RandPred,
##
      data = tbl reg aug)
##
## Residuals:
##
       Min
                 10
                      Median
                               30
                                          Max
## -13,1363 -3,0404 0,7548 4,3149 14,3068
##
## Coefficients:
##
                          Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         -1492.865
                                      295.360 -5.054 0.001473 **
## `Breast Circumference`
                         8.304
                                        1.202 6.909 0.000229 ***
## RandPred
                             2.742
                                        1.306 2.100 0.073839 .
##
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.278 on 7 degrees of freedom
## Multiple R-squared: 0.8917, Adjusted R-squared: 0.8607
## F-statistic: 28.81 on 2 and 7 DF, p-value: 0.0004183
```

Why not taking all predictors?

- Additional parameters must be estimated from data
- Predictive power decreased with too many predictors (cannot be shown for this data set, because too few data points)
- Bias-variance trade-off

Bias-variance trade-off

Assume, we are looking for optimum prediction

Example with BW: q_1 = {BC, RandPred} q_2 = {BC}

with q relevant predictor variables

Average mean squared error of prediction s_i

$$MSE = n^{-1} \sum_{i=1}^{n} E\left[(m(x_i) - s_i)^2\right]$$

where m(.) denotes the linear function of the unknown true model.

$$s_i = \sum_{r=1}^q \hat{\beta}_{j_r} x_{ij_r}$$

Bias-variance trade-off II the more predictors x are included in s_i, the smaller the bias will be

MSE can be split into two parts

variance

$$MSE = n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2 + n^{-1} \sum_{i=1}^{n} var(s_i)$$

where $n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2$ is called the squared **bias**

Increasing q leads to reduced bias but increased variance (var(s_i))

- ▶ Hence, find *s_i* such that MSE is minimal
- ▶ Problem: cannot compute MSE because *m*(.) is not known

\rightarrow estimate MSE

Mallows C_p statistic

- For a given model *M*, *SSE*(*M*) stands for the residual sum of squares.
- MSE can be estimated as

number of predictors in model M

$$\widehat{\textit{MSE}} = \textit{n}^{-1}\textit{SSE}(\mathcal{M}) - \hat{\sigma}^2 + 2\hat{\sigma}^2|\mathcal{M}|/\textit{n}$$

where $\hat{\sigma}^2$ is the estimate of the error variance of the full model, $SSE(\mathcal{M})$ is the residual sum of squares of the model \mathcal{M} , *n* is the number of observations and $|\mathcal{M}|$ stands for the number of predictors in \mathcal{M}

$$C_{p}(\mathcal{M}) = rac{SSE(\mathcal{M})}{\hat{\sigma}^{2}} - n + 2|\mathcal{M}|$$

Values of Mallow C_p should be as small as possible

Searching The Best Model

- Exhaustive search over all sub-models might be too expensive
- For p predictors there are $2^p 1$ sub-models
- With p = 16, we get 6.5535×10^4 sub-models

ightarrow step-wise approaches

2 ways to do step-wise approach:1. forward selection2. backward elimination

Forward Selection

M_0: y_i = b_0 + e_i ==> just use an intercept b_0 ==> compute C_p Step 2: Question: would it be better to include any of the available pred? ==> Constructing model M_1: In our example with BW ==> Should M_1 contain BC or RandPred as its preditor?

- 1. Start with smallest sub-model \mathcal{M}_0 as current model
- 2. Include predictor that reduces SSE the most to current model
- 3. Repeat step 2 until all predictors are chosen
- \rightarrow results in sequence $\mathcal{M}_0\subseteq \mathcal{M}_1\subseteq \mathcal{M}_2\subseteq \dots$ of sub-models
 - 4. Out of sequence of sub-models choose the one with minimal C_p

For each sub-model M_0 , M_1 , M_2 , ... we have computed C_p From all submodel select the one with lowest C_p value This will be the best model.

Backward Selection

M_0: full model, for example of BW: M_0: y_i = b_0 + b_1 * breast_circum. + b_2 * randpred + e_i Step 2: exlude predictors from M_0

- 1. Start with full model \mathcal{M}_0 as the current model
- 2. Exclude predictor variable that increases SSE the least from current model
- 3. Repeat step 2 until all predictors are excluded (except for intercept)
- \rightarrow results in sequence $\mathcal{M}_0 \supseteq \mathcal{M}_1 \supseteq \mathcal{M}_2 \supseteq \dots$ of sub-models
 - 4. Out of sequence choose the one with minimal C_p

Considerations

Whenever possible, choose backward selection, because it leads to better results

• If $p \ge n$, only forward is possible, but then consider LASSO

backward eleminiation is not possible because full model cannot be fitted

Alternative Selection Criteria

AIC: Akaike Information Criterion BIC: Bayesian Information Criterion

- ► AIC or BIC, requires distributional assumptions.
- AIC is implemented in MASS::stepAIC()
- Adjusted R² is a measure of goodness of fit, but sometimes is not conclusive when comparing two models
- Try in exercise

R-package: olsrr, MASS uses just AIC

For Genetic Evaluation:

- * In our database: many different predictors are available for a given trait
- * Do model selection to find good balance between bias and variance

* Model selection is used to identify fixed effects in our models to estimated variance components and to predict breeding values.