Model Selection

Peter von Rohr

Last week: 20.04.2020 **2 sides in breeding program: 1. economic evaluation 2. prediction of breeding values using statistical modelling**

Why Statistical Modelling?

Some people believe, they do not need statistics. For them it is enough to look at a diagram

Statistical Modelling Because ...

Two types of dependencies between physical quantities

- 1. deterministic**no sources of uncertainty**
- 2. stochastic

Statistical Model

- \triangleright stochastic systems contains many sources of uncertainty
- \triangleright statistical models can handle uncertainty
- \triangleright components of a statistical model
	- **P** response variable y **observed phenotypes**
	- \triangleright predictor variables x_1, x_2, \ldots, x_k fixed effects and random breeding
	- \blacktriangleright error term e

values

If function $m(x)$

statistical model

How Does A Statistical Model Work?

- rianglerigibles x_1, x_2, \ldots, x_k are transformed by function $m(x)$ to explain the response variable y
- \blacktriangleright uncertainty is captured by error term.
- \triangleright as a formula, for observation i

Which function $m(x)$?

In class of functions that can be used as $m(x)$ is infinitely large \blacktriangleright restrict to linear functions of predictor variables

Which predictor variables?

 \triangleright Question, about which predictor variables to use is answered by model selection

predictor variables: x_1, x_2, …, x_k

Why Model Selection

with respect to explaining the differences in the response variables

- \triangleright Many predictor variables are available
- \blacktriangleright Are all of them relevant?
- \triangleright What is the meaning of relevant in this context?

Example Dataset

random numbers = non-meaningful

No Relevance of Predictors

random pattern

tbl_reg_aug\$RandPred

Relevance of Predictors

pattern: points all grouped around regression line

tbl_reg_aug\$'Breast Circumference'

Fitting a Regression Model

```
##
## Call:
## lm(formula = `Body Weight` ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -35.574 -20.200 7.236 11.519 34.426
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -236.775 608.880 -0.389 0.708<br>
## BandPred 4 062 3 379 1 202 0 264
## RandPred
##
## Residual standard error: 24.27 on 8 degrees of freedom
## Multiple R-squared: 0.153, Adjusted R-squared: 0.04716
## F-statistic: 1.445 on 1 and 8 DF, p-value: 0.2636
                                                  Low Adj. R-sq ==>
                                                  Model does not explain
                                                  a high rate of variation
                                                  of response variables
```
std. error has about the same magnitude as the estimate ==> problem

Fitting a Regression Model II

```
##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287
```
Multiple Regression

```
##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference` + RandPred,
\## data = tbl reg aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.1363 -3.0404 0.7548 4.3149 14.3068
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1492.865 295.360 -5.054 0.001473 **
## `Breast Circumference` 8.304 1.202 6.909 0.000229 ***
## RandPred 2.742 1.306 2.100 0.073839 .
#### Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.278 on 7 degrees of freedom
## Multiple R-squared: 0.8917, Adjusted R-squared: 0.8607
## F-statistic: 28.81 on 2 and 7 DF, p-value: 0.0004183
```
Why not taking all predictors?

- \blacktriangleright Additional parameters must be estimated from data
- **Peredictive power decreased with too many predictors (cannot** be shown for this data set, because too few data points)
- \blacktriangleright Bias-variance trade-off

Bias-variance trade-off

 \triangleright Assume, we are looking for optimum prediction

Example with BW: q_1 = {BC, RandPred} q_2 = {BC}

with q relevant predictor variables

 \blacktriangleright Average mean squared error of prediction s_i

$$
MSE = n^{-1} \sum_{i=1}^{n} E [(m(x_i) - s_i)^2]
$$

where m(*.*) denotes the linear function of the unknown true model.

$$
s_i = \sum_{r=1}^q \hat{\beta}_{j_r} x_{ij_r}
$$

Bias-variance trade-off II

the more predictors x are included in s_i, the smaller the bias will be

 \triangleright MSE can be split into two parts

variance

$$
MSE = n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2 + n^{-1} \sum_{i=1}^{n} var(s_i)
$$

where $n^{-1} \sum_{i=1}^{n} (E[s_i] - m(x_i))^2$ is called the **equal**ed bias

Increasing q leads to reduced bias but increased variance $\left(\textit{var}(s_i)\right)$

- \blacktriangleright Hence, find s_i such that MSE is minimal
- **Problem:** cannot compute MSE because $m(.)$ is not known

\rightarrow estimate MSE

Mallows C_p statistic

$$
M: y_i = b_0 + b_1 * \text{break_circumference}
$$

- \blacktriangleright For a given model M, SSE(M) stands for the residual sum of squares.
- \triangleright MSE can be estimated as

number of predictors in model M

$$
\widehat{\text{MSE}} = n^{-1} \text{SSE}(\mathcal{M}) - \hat{\sigma}^2 + 2\hat{\sigma}^2 |\mathcal{M}|/n
$$

where $\hat{\sigma}^2$ is the estimate of the error variance of the full model, $SSE(\mathcal{M})$ is the residual sum of squares of the model \mathcal{M} , n is the number of observations and $|\mathcal{M}|$ stands for the number of predictors in M

$$
C_p(\mathcal{M}) = \frac{\mathsf{SSE}(\mathcal{M})}{\hat{\sigma}^2} - n + 2|\mathcal{M}|
$$

Values of Mallow C_p should be as small as possible

Searching The Best Model

- \blacktriangleright Exhaustive search over all sub-models might be too expensive
- ► For p predictors there are $2^p 1$ sub-models
- Vith $p = 16$, we get 6.5535×10^4 sub-models

 \rightarrow step-wise approaches

2 ways to do step-wise approach: 1. forward selection 2. backward elimination

Forward Selection

M_0: y_i = b_0 + e_i ==> just use an intercept b_0 ==> compute C_p Step 2: Question: would it be better to include any of the available pred? ==> Constructing model M_1: In our example with BW ==> Ashould M_1 contain BC or RandPred as its preditor?

- 1. Start with smallest sub-model M_0 as current model
- 2. Include predictor that reduces SSE the most to current model
- 3. Repeat step 2 until all predictors are chosen
- \rightarrow results in sequence $\mathcal{M}_0 \subseteq \mathcal{M}_1 \subseteq \mathcal{M}_2 \subseteq \dots$ of sub-models
	- 4. Out of sequence of sub-models choose the one with minimal C_p

For each sub-model M_0, M_1, M_2, … we have computed C_p From all submodel select the one with lowest C_p value This will be the best model.

Backward Selection

M_0: full model, for example of BW:

M_0: y_i = b_0 + b_1 * breast_circum. + b_2 * randpred + e_i Step 2: exlude predictors from M_0

- 1. Start with full model M_0 as the current model
- 2. Exclude predictor variable that increases SSE the least from current model
- 3. Repeat step 2 until all predictors are excluded (except for intercept)
- \rightarrow results in sequence $\mathcal{M}_0 \supseteq \mathcal{M}_1 \supseteq \mathcal{M}_2 \supseteq \dots$ of sub-models
	- 4. Out of sequence choose the one with minimal C_p

Considerations

▶ Whenever possible, choose **backward** selection, because it leads to better results

If $p \ge n$, only forward is possible, but then consider LASSO

backward eleminiation is not possible because full model cannot be fitted

Alternative Selection Criteria

AIC: Akaike Information Criterion BIC: Bayesian Information Criterion

- \blacktriangleright AIC or BIC, requires distributional assumptions.
- \blacktriangleright AIC is implemented in MASS:: stepAIC()
- Adjusted R^2 is a measure of goodness of fit, but sometimes is not conclusive when comparing two models
- \blacktriangleright Try in exercise

R-package: olsrr, MASS uses just AIC

For Genetic Evaluation:

- *** In our database: many different predictors are available for a given trait**
- *** Do model selection to find good balance between bias and variance**

*** Model selection is used to identify fixed effects in our models to estimated variance components and to predict breeding values.**