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Last week:
2 sides in breeding program:
1. economic evaluation
2. prediction of breeding values using statistical 
modelling



Why Statistical Modelling?
Some people believe, they do not need statistics. For them it is
enough to look at a diagram
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Statistical Modelling Because . . .

Two types of dependencies between physical quantities

1. deterministic
2. stochastic

pvr
no sources of uncertainty
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Deterministic Versus Stochastic

pvr
time t that it takes the 
apple to fall can be 
computed without 
sources of uncertainty

pvr
many sources of 
uncertainty
> genes important
> post-translational processes
> env



Statistical Model

I stochastic systems contains many sources of uncertainty
I statistical models can handle uncertainty
I components of a statistical model

I response variable y
I predictor variables x1, x2, . . . , xk
I error term e
I function m(x)

pvr
observed phenotypes

pvr
fixed effects and random breeding
values

pvr
statistical model



How Does A Statistical Model Work?

I predictor variables x1, x2, . . . , xk are transformed by function
m(x) to explain the response variable y

I uncertainty is captured by error term.
I as a formula, for observation i

yi = m(xi) + ei

pvr
x_i predictors are taken as input to 
the function m()
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Which function m(x)?

I class of functions that can be used as m(x) is infinitely large
I restrict to linear functions of predictor variables



Which predictor variables?

I Question, about which predictor variables to use is answered
by model selection

pvr
predictor variables: x_1, x_2, …, x_k



Why Model Selection

I Many predictor variables are available
I Are all of them relevant?
I What is the meaning of relevant in this context?
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with respect to explaining 
the differences in the 
response variables
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Example Dataset

Animal Breast Circumference Body Weight RandPred

1 176 471 183
2 177 463 178
3 178 481 182
4 179 470 178
5 179 496 178
6 180 491 178
7 181 518 183
8 182 511 178
9 183 510 181
10 184 541 183

pvr
random numbers = non-meaningful
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pvr
response variable
y_i
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predictor = meaningful



No Relevance of Predictors
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Relevance of Predictors

176 178 180 182 184

46
0

48
0

50
0

52
0

54
0

tbl_reg_aug$‘Breast Circumference‘

tb
l_

re
g_

au
g$

‘B
od

y 
W

ei
gh

t‘

pvr

pvr
pattern: points all grouped around regression line



Fitting a Regression Model

##
## Call:
## lm(formula = `Body Weight` ~ RandPred, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -35.574 -20.200 7.236 11.519 34.426
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -236.775 608.880 -0.389 0.708
## RandPred 4.062 3.379 1.202 0.264
##
## Residual standard error: 24.27 on 8 degrees of freedom
## Multiple R-squared: 0.153, Adjusted R-squared: 0.04716
## F-statistic: 1.445 on 1 and 8 DF, p-value: 0.2636
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std. error has about the same magnitude as the estimate ==> problem
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Low Adj. R-sq ==>
Model does not explain
a high rate of variation
of response variables



Fitting a Regression Model II

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287



Multiple Regression

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference` + RandPred,
## data = tbl_reg_aug)
##
## Residuals:
## Min 1Q Median 3Q Max
## -13.1363 -3.0404 0.7548 4.3149 14.3068
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1492.865 295.360 -5.054 0.001473 **
## `Breast Circumference` 8.304 1.202 6.909 0.000229 ***
## RandPred 2.742 1.306 2.100 0.073839 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.278 on 7 degrees of freedom
## Multiple R-squared: 0.8917, Adjusted R-squared: 0.8607
## F-statistic: 28.81 on 2 and 7 DF, p-value: 0.0004183
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Which model is better?

Why not taking all predictors?

I Additional parameters must be estimated from data
I Predictive power decreased with too many predictors (cannot

be shown for this data set, because too few data points)
I Bias-variance trade-off



Bias-variance trade-off

I Assume, we are looking for optimum prediction

si =
q∑

r=1
β̂jr xijr

with q relevant predictor variables

I Average mean squared error of prediction si

MSE = n−1
n∑

i=1
E

[
(m(xi)− si)2

]
where m(.) denotes the linear function of the unknown true model.
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Example with BW:
q_1 = {BC, RandPred}
q_2 = {BC}



Bias-variance trade-off II

I MSE can be split into two parts

MSE = n−1
n∑

i=1
(E [si ]−m(xi))2 + n−1

n∑
i=1

var(si)

where n−1 ∑n
i=1 (E [si ]−m(xi))2 is called the squared bias

I Increasing q leads to reduced bias but increased variance
(var(si))

I Hence, find si such that MSE is minimal
I Problem: cannot compute MSE because m(.) is not known

→ estimate MSE
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variance

pvr
the more predictors x are included in s_i,
the smaller the bias will be



Mallows Cp statistic

I For a given modelM, SSE (M) stands for the residual sum of
squares.

I MSE can be estimated as

M̂SE = n−1SSE (M)− σ̂2 + 2σ̂2|M|/n

where σ̂2 is the estimate of the error variance of the full model,
SSE (M) is the residual sum of squares of the modelM, n is the
number of observations and |M| stands for the number of
predictors inM

Cp(M) = SSE (M)
σ̂2 − n + 2|M|

pvr
M: y_i = b_0 + b_1 * breast_circumference

pvr

pvr
number of predictors in
model M

pvr
Values of Mallow C_p should be as small as possible



Searching The Best Model

I Exhaustive search over all sub-models might be too expensive
I For p predictors there are 2p − 1 sub-models
I With p = 16, we get 6.5535× 104 sub-models

→ step-wise approaches

pvr

pvr
2 ways to do step-wise approach: 
  1. forward selection
  2. backward elimination



Forward Selection

1. Start with smallest sub-modelM0 as current model
2. Include predictor that reduces SSE the most to current model
3. Repeat step 2 until all predictors are chosen

→ results in sequenceM0 ⊆M1 ⊆M2 ⊆ . . . of sub-models

4. Out of sequence of sub-models choose the one with minimal
Cp

pvr
M_0: y_i = b_0 + e_i ==> just use an intercept b_0 ==> compute C_p
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Step 2: Question: would it be better to include any of the available pred?
==> Constructing model M_1: In our example with BW ==> 
Should M_1 contain BC or RandPred as its preditor?

pvr
For each sub-model M_0, M_1, M_2, … we have computed C_p
From all submodel select the one with lowest C_p value
This will be the best model.



Backward Selection

1. Start with full modelM0 as the current model
2. Exclude predictor variable that increases SSE the least from

current model
3. Repeat step 2 until all predictors are excluded (except for

intercept)

→ results in sequenceM0 ⊇M1 ⊇M2 ⊇ . . . of sub-models

4. Out of sequence choose the one with minimal Cp

pvr
M_0: full model, for example of BW: 
M_0: y_i = b_0 + b_1 * breast_circum. + b_2 * randpred + e_i

pvr
Step 2: exlude predictors from M_0




Considerations

I Whenever possible, choose backward selection, because it
leads to better results

I If p ≥ n, only forward is possible, but then consider LASSO

pvr

pvr
backward eleminiation is not possible because
full model cannot be fitted
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Alternative Selection Criteria

I AIC or BIC, requires distributional assumptions.
I AIC is implemented in MASS::stepAIC()
I Adjusted R2 is a measure of goodness of fit, but sometimes is

not conclusive when comparing two models
I Try in exercise

pvr
AIC: Akaike Information Criterion
BIC: Bayesian Information Criterion

pvr
R-package: olsrr, MASS uses just AIC

pvr
For Genetic Evaluation: 
* In our database: many different predictors are available for a given trait
* Do model selection to find good balance between bias and variance
* Model selection is used to identify fixed effects in our models to estimated 
variance components and to predict breeding values.


