Variance Components Estimation

Peter von Rohr

27.04.2020

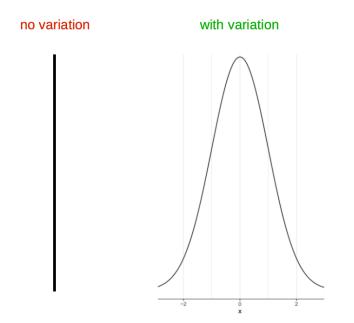
Genetic Variation

- Requirement for trait to be considered in breeding goal
- Breeding means improvement of next generation via selection and mating
- Only genetic (additive) components are passed to offspring
- Selection should be based on genetic component of trait
- Selection only possible with genetic variation

 \rightarrow genetic variation indicates how good characteristics are passed from parents to offspring

 \rightarrow measured by **heritability** $h^2 = \frac{\sigma_a^2}{\sigma_a^2}$

Two Traits



Problems

- Genetic components cannot be observed or measured
- Must be estimated from data
- Data are mostly phenotypic
- \rightarrow topic of variance components estimation
 - Model based, that means connection between phenotypic measure and genetic component are based on certain model

$$p = g + e$$

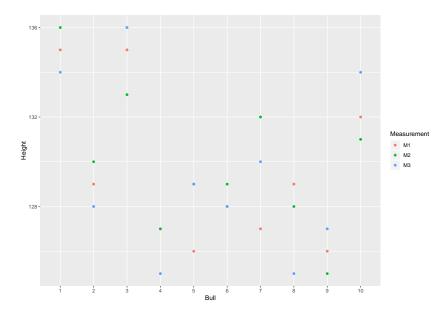
with cov(g, e) = 0

► Goal: separate variation due to g (σ²_a) from phenotypic variation

Example of Variance Components Separation

- Estimation of repeatability
- Given repeated measurements of same trait at the same animal
- Repeatability means variation of measurements at the same animal is smaller than variation between measurements at different animals

Repeatability Plot



Model

$$y_{ij} = \mu + t_i + \epsilon_{ij}$$

where

- y_{ij} measurement j of animal i
- μ expected value of y
- t_i deviation of y_{ij} from μ attributed to animal i
- ϵ_{ij} measurement error

Estimation Of Variance Components

- $\blacktriangleright E(t_i)=0$
- σ_t² = E(t_i²): variance component of total variance (σ_y²) which can be attributed to the *t*-effects
- $E(\epsilon_{ij}) = 0$
- $\sigma_{\epsilon}^2 = E(\epsilon_{ij}^2)$: variance component attributed to ϵ -effects
- $\blacktriangleright \ \sigma_y^2 = \sigma_t^2 + \sigma_\epsilon^2$
- Repeatability w defined as:

$$w = \frac{\sigma_t^2}{\sigma_t^2 + \sigma_\epsilon^2}$$

 \rightarrow estimate of σ_t^2 needed

Analysis Of Variance (ANOVA)

Effect	df	Sum Sq	Mean Sq	E(Mean Sq)
Bull (t)			SSQ(t)/(r-1)	
Residual (ϵ)	N-r	$SSQ(\epsilon)$	$SSQ(\epsilon)/(N-r)$	σ_{ϵ}^2

where

$$SSQ(t) = \left[\frac{1}{n}\sum_{i=1}^{r}\left(\sum_{j=1}^{n}y_{ij}\right)^{2}\right] - \left(\sum_{i=1}^{r}\sum_{j=1}^{n}y_{ij}\right)^{2}/N$$

$$SSQ(\epsilon) = \sum_{i=1}^{r} \sum_{j=1}^{n} y_{ij}^2 - \left[\frac{1}{n} \sum_{i=1}^{r} \left(\sum_{j=1}^{n} y_{ij}\right)^2\right]$$

Zahlenbeispiel

Df Sum Sq Mean Sq F value Pr(>F)
Bull 9 286.7 31.85 13.85 8.74e-07 ***
Residuals 20 46.0 2.30
--## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Setting expected values of Mean Sq equal to estimates of variance components

$$\hat{\sigma}_{\epsilon}^2 = 2.3 \; {
m and} \; \hat{\sigma}_t^2 = rac{31.85-2.3}{3} = 9.85$$

Repeatability

$$\hat{w} = \frac{\hat{\sigma}_t^2}{\hat{\sigma}_t^2 + \hat{\sigma}_\epsilon^2} = 0.81$$

Same Strategy for Sire Model

Sire model is a mixed linear effects model with sire effects s as random components

$$y = Xb + Zs + e$$

In case where sires are not related, \$var(s) = I * σ_s²
 From σ_s², we get genetic additive variance as σ_a² = 4 * σ_s²

ANOVA

Effect	Degrees of Freedom	Sum Sq	Mean Sq	E(Mean Sq)
Sire (s b)	r – 1	SSQ(s b)	SSQ(s b)/(r-1)	$\sigma_e^2 + k * \sigma_s^2$
Residual (<i>e</i>)	N-r	SSQ(e)	SSQ(e)/(N-r)	σ_e^2

with

$$k = \frac{1}{r-1} \left[N - \frac{\sum_{i=1}^{r} n_i^2}{N} \right]$$

Maximum Likelihood (ML)

Likelihood

$$L(\theta) = f(y|\theta)$$

Normal distribution

$$L(\theta) = (2\pi)^{-1/2n} \sigma^{-n} |H|^{-1/2} * exp\left\{-\frac{1}{2\sigma^2}(y - Xb)^T H^{-1}(y - Xb)\right\}$$

with $var(y) = H * \sigma^2$ and $\theta^T = \begin{bmatrix} b & \sigma^2 \end{bmatrix}$

Maximization of Likelihood

• Set $\lambda = logL$

• Compute partial derivatives of λ with respect to all unknowns

 $\frac{\partial \lambda}{\partial b}$ $\frac{\partial \lambda}{\partial \sigma^2}$

- Set partial derivatives to 0 and solve for unknowns
- Use solutions as estimates

Restricted Maximum Likelihood (REML)

- \blacktriangleright Problem with ML: estimate of σ^2 depends on $b \rightarrow$ undesirable
- ► Do transformations Sy and Qy
- (i) The matrix S has rank n t and the matrix Q has rank t (ii) The result of the two transformations are independent, that

means cov(Sy, Qy) = 0 which is met when $SHQ^T = 0$

- (iii) The matrix S is chosen such that E(Sy) = 0 which means SX = 0
- (iv) The matrix QX is of rank t, so that every linear function of the elements of Qy estimate a linear function of b.

▶ From (i) and (ii) it follows that the likelihood L of y is the product of the likelihoods of Sy (L*) and Qy (L**) that means

$$\lambda = \lambda^* + \lambda^{**}$$

► Variance components are estimated from λ* which will then be independent of b

Bayesian Estimation

- Proposed already in the 80's
- Full implementation only in 1993
- Requirements:
 - cheap computing and
 - good pseudo-random number generators
- Bayesian estimation is based on conditional posterior distribution of unknowns given the knowns
- Conditional posterior distribution is computed from prior distribution of unknowns times the likelihood

Model

Univariate Gaussian linear mixed model

y = Xb + Zu + e

where

- y vector of observations (length n)
- b vector of fixed effects (length p)
- u vector of random breeding values (length q)
- *e* vector of random residuals (length *n*)
- X $n \times p$ design matrix linking fixed effects to observations
- $Z \quad n \times q \text{ design matrix linking breeding} \\ \text{values to observations}$

Data generating distribution

$$y|b, u, \sigma_e^2 \sim \mathcal{N}(Xb + Zu, I * \sigma_e^2)$$

where I is a $n \times n$ identity matrix and σ_e^2 is the variance of the random residuals.

Priors

- Prior distributions must be specified for all unknowns
- Unknowns in our example are: b, u, σ_e^2 and σ_u^2
- Prior distribution for
 - *b* is flat, i.e. $p(b) \propto c$
 - *u* Normal distribution as $u|G, \sigma_u^2 \sim N(0, G * \sigma_u^2)$
 - σ_e^2 scaled inverse χ^2 : $p(\sigma_e^2|\nu_e, s_e^2) \propto (\sigma_e^2)^{-\nu_e/2-1} exp(-\frac{1}{2}\nu_e s_e^2/\sigma_e^2)$ • σ_u^2 : $p(\sigma_u^2|\nu_u, s_u^2) \propto (\sigma_u^2)^{-\nu_u/2-1} exp(-\frac{1}{2}\nu_u s_u^2/\sigma_u^2)$
- ▶ ν_e , ν_s , s_e^2 and s_u^2 are called hyper-parameters and must be determined

Additional Terms

Let

$$\theta^{\mathsf{T}} = (b^{\mathsf{T}}, u^{\mathsf{T}}) = (\theta_1, \theta_2, \dots, \theta_N)$$

$$\theta_{-i} = (\theta_1, \theta_2, \dots, \theta_{i-1}, \theta_{i+1}, \dots, \theta_N)$$

► Further, let

$$s^{\mathsf{T}} = (s_u^2, s_e^2)$$

 $\quad \text{and} \quad$

$$\nu^{\mathsf{T}} = (\nu_{\mathsf{u}}, \nu_{\mathsf{e}})$$

Joint Posterior Density

The joint posterior distribution can be written as

$$p(\theta, \sigma_u^2, \sigma_e^2 | y, s, \nu) \propto p(\theta) * p(\sigma_u^2 | \nu_u, s_u^2) * p(\sigma_e^2 | \nu_e, s_e^2) * p(y | \theta, \sigma_e^2)$$

Fully Conditional Posterior Densities of θ

 Density of every single unknown component when setting all other components as known

$$\theta_i | y, \theta_{-i}, \sigma_u^2, \sigma_e^2, s, \nu \sim \mathcal{N}(\tilde{\theta_i}, \tilde{v_i})$$

where
$$\tilde{\theta}_i = (r_i - \sum_{j=1, j \neq i}^N w_{ij}\theta_j)/w_{ii}$$
 and $\tilde{v}_i = \sigma_e^2/w_{ii}$.

vector r is the vector of right-hand side of MME
matrix W is the coefficient matrix of MME

Fully Conditional Posterior Densities of σ_e^2

• scaled inverted chi-square distribution for σ_e^2

$$\sigma_e^2 | \mathbf{y}, \theta, \sigma_u^2, \mathbf{s}, \nu \sim \tilde{\nu_e} \tilde{s_e}^2 \chi_{\tilde{\nu_e}}^{-2}$$

Parameters of the above distribution are defined as

$$\tilde{\nu_e} = n + \nu_e$$

and

$$\tilde{s_e}^2 = \left[(y - Xb - Zu)^T (y - Xb - Zu) + \nu_e s_e^2 \right] / \tilde{\nu_e}$$

Fully Conditional Posterior Densities of σ_{μ}^2

• scaled inverted chi-square distribution for σ_u^2

$$\sigma_u^2 | \mathbf{y}, \theta, \sigma_e^2, \mathbf{s}, \nu \sim \tilde{\nu_u} \tilde{\mathbf{s}_u}^2 \chi_{\tilde{\nu_u}}^{-2}$$

Parameters of the above distribution are defined as

$$\tilde{\nu_u} = q + \nu_u$$

and

$$\tilde{s_u}^2 = \left[u^T G^{-1} u + \nu_u s_u^2 \right] / \tilde{\nu_u}$$

Implementation

- Step 1: set starting values for θ , σ_e^2 and σ_u^2
- Step 2: draw random number for each component θ_i of θ from fully conditional distribution N(θ̃_i, ν̃_i)
- Step 3: draw random number for σ_e^2 from $\tilde{\nu_e} \tilde{s_e}^2 \chi_{\tilde{\nu_e}}^{-2}$
- Step 4: draw random number for σ_u^2 from $\tilde{\nu}_u \tilde{s}_u^2 \chi_{\tilde{\nu}_u}^{-2}$
- Repeat steps 2-4 many times and store random numbers
- Step 5: compute means of random numbers to get Bayesian estimates of unknowns θ , σ_e^2 and σ_u^2