Chapter 4

Selection Index

So far we have seen how to predict breeding values based on a single own-performance record (3.3.1), based
on repeated records (3.3.2) and based on progeny records (3.4). For real livestock breeding populations, these
three procedures are not flexible enough, because we want to predict breeding values for a given selection
candidate based on all available information. In the past, two different methods were developed which fulfill
the requirement of considering all available information in the prediction of breeding values. Theses methods
are

1. Selection Index Theory ((Hazel, 1943) and (Hazel and Lush, 1943)) and
2. Best Linear Unbiased Prediction (BLUP) ((Henderson, 1973) and (Henderson, 1975))

Both methods are based on the same genetic model. The main difference between the two methods consists
in the way how they correct for identifiable systematic environmental effects. We start with a treatment of
selection index theory. In chapter 5, the BLUP-based methods will be introduced.

4.1 Introduction

In principle, prediction of breeding values aims at assessing the genetic potential of a selection candidate that
is due to additive gene effects based on all available information, such that the correlation between true and
predicted breeding value is maximal. Because, we want to do this for a large number of selection candidates,
we can formulate our aim in a more general way. For a given population, we want to predict breeding values
for all animals in the population using all available information, such that the correlation between true and
predicted breeding values are maximized. An alternative objective for the prediction to the maximization of
the correlation between true and predicted breeding values is the minimization of the mean squared error of
the prediction. The description of the aims of our procedure to predict breeding values shows that we are
dealing with two different concepts of breeding value.

1. True breeding value which corresponds to the sum of all additive gene-effects

2. Predicted breeding value which is a function of the phenotypic observations (y) that is determined
by statistical methods. As a prediction it is always associated with a certain error which we want to
be minimal.

The prediction of breeding values has three different objectives.

1. Selection candidates are ranked according to the predicted breeding values. Hence, it provides a
criterion for selecting parents out of a pool of selection candidates

2. Predicted breeding values are used to assess the response to selection and is important for planning a
breeding program

3. Predicted breeding values are one criterion that affect the price of breeding animals and the price of
seamen.
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The definition 2.1 of the term breeding value has several problems when it comes to its potential usefulness
for predicting breeding values.

e It is impossible to generate an infinite number of progeny before having a reliable prediction of the
breeding value

e Due to the above mentioned objectives, we want to have a prediction of the breeding value available
as early as possible.

e The predicted breeding value should be as accurate as possible

To address these issues, the above mentioned methods were developed. We start with the method of the
selection index.

4.2 Selection Index Method

The selection index is a method to predict the breeding value of an animal (i) by using all available infor-
mation on the animal and on its relatives. The result of the selection index method is an assignment of a
numerical value () to each animal. All animals in the population can then be ranked according to their
index value. The ranking according to the index value can be used as selection criterion. In principle the
index I is defined as linear combination of all available information. This can be written as

I=d;=byyr +boys+ -+ byyn, = by (4.1)

where b is a vector of index weights and y is a vector of information sources. Here we assume that all values
in y are corrected for appropriate mean levels. The resulting index value I in (4.1) is used as the predicted
breeding value d;. From a statistical point of view equation (4.1) corresponds to a multiple linear regression.
The vector of index weights b are understood as partial regression coefficients.

4.3 Aggregate Genotype

In most practical livestock breeding scenarios, we want to improve a population at the genetic level with
respect to more than one trait or characteristic, simultaneously. This requires a procedure that enables
us to combine the breeding values of several trait into one selection criterion. This criterion is called the
aggregate genotype H. It is defined as

H = wia; + weas + -+ + wmam = w' a (4.2)

where a corresponds to the vector of true breeding values and w is a vector of economic values. The
economic value wy, for a given trait k is defined as the marginal change in profit caused by a small change
in the population mean (ug) of the trait k. At this point, we are not describing how the economic values wy,
are derived, but we consider them to be known. For the construction of the selection index, we are using the
general form of the aggregate genotype H. Once the selection index is constructed, we can go back to the
simple scenario of considering just one trait which reduces the aggregate genotype H to the true breeding
value a of the single trait.

4.4 Theory of Index Construction

The term index construction stands for the computation of the vector of index weights b for a given set of
information sources and a given aggregate genotype. Independently from the available information sources,
the following parameters must be known
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¢ heritabilities and phenotypic standard deviations for the traits in the aggregate genotype and for the
traits in the index.

e phenotypic correlations between the traits in the index

e genetic correlations between the traits in the index and the traits in the aggregate genotype

e genetic correlations between the traits in the aggregate genotype

e economic values for the traits in the aggregate genotype

The objective of the index construction is to maximize the correlation rg; between the index I and the
aggregate genotype H. Because the index I corresponds to a multiple linear regression, the mean squared
error between aggregate genotype and index is to be minimized. From this it follows that

E(H —I)*> - min (4.3)

The solution to the index construction objective in equation (4.3) leads to the so-called index normal equa-
tions which have the following form.

Pb=Guw (4.4)

where P is the phenotypic variance-covariance matrix between all traits in the index, G is the genetic
variance-covariance matrix between the traits in the aggregate genotype and in the index and w is a vector
of known economic values. Solving for the vector of unknown index weights b leads to

b= P 'Guw (4.5)

The accuracy of the index is assessed by the correlation rg; between the index I and the aggregate genotype
H. The higher this correlation, the better the approximation of H by I. The correlation rgy; can be
computed as shown in (4.6). The terms for cov(H,I), oy and oy are taken from (4.23) and for b we insert
the solution taken from (4.5).

w? « GT xb
V (WT % Cxw) * (bT * P *b)
wl «GT « P71« Gxw
VT« Cxw)* (P~1%G*w)T + P+ P~1xGxw)
wl «GT« P~ s« Gxw
VT Cxw)* (Wl « GT « P~1x Px P~1x G xw)
B wl «GT « P71« Gxw
B V@WT + Cxw) * (Wl GT x P~1x G+ w)
_\/wT*GT*P—l*G*w

wl x« C xw

_ o (4.6)
og

The response to selection R which results from applying a selection scheme according to the index I per
generation is computed as
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R=ixrgrxong
. 07
=1% — %0y
OH
:i*dj (47)

where i is the selection intensity.

4.5 Example of Index with Own Performance

The simplest case of an index [ is the one where the aggregate genotype H consists of one trait and the
index I contains a single own performance record of the same trait. This is equivalent to using the index [
to predicting the breeding value a of an animal based on own phenotypic own performance record y. Hence
we can set

H=a and I=20by"

During the index construction, we have assumed the information in the index to be corrected for the appro-
priate population mean u. For our example here, we can set y* = y — p. To determine the unknown index
weight b which is on our example just a single number, we have to specify P, G and w. Because, we are
looking at just one trait, the vector of economic values w is set to one. The matrix P was defined to be
the variance-covariance matrix between the traits in the index. As the index I contains just one phenotypic
record, then P corresponds to the phenotypic variance O'Z of our trait of interest. The matrix G was defined
to be the genetic variance-covariance matrix between the traits in the aggregate genotype and the traits in
the index. In our example we have just one trait which is the same in H and in I, hence G corresponds to
the additive genetic variance o2. In summary, we have found that

QN N
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w

Il
= Q

(4.8)

Inserting the terms of (4.8) into equation (4.5) to compute the index weight b results in

b=P 'xGxw

a2, 2
=0, %0, %1

EENE

=4 =p2 (4.9)

g
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Using the index weight b found in (4.9) to compute the index I, we get

=G (4.10)

The index value I that we obtained in (4.10) corresponds to the predicted breeding value for a given trait of
an animal ¢ based on an own performance phenotypic record of animal ¢ in the respective trait. Comparing
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the predicted breeding value obtained in (4.10) using selection index theory to the result obtained from the
regression approach in (3.5) shows that they are identical.

The accuracy rpy of the predicted breeding value (d;) using selection index theory is computed as shown in
(4.6)

a1

THI = ——
o
boy
Oa

2
heoy
Oq

=h (4.11)

Similarly to the predicted breeding value, the accuracy rgy; that results from selection index theory is
identical to what was found using the regression approach.

4.6 Example with Progeny Records

The prediction of breeding values for a given animal ¢ based on progeny records is very common in livestock
breeding. Examples are dairy cattle where bulls are evaluated based on lactation records of daughters.
Similarly for beef cattle or pigs where sires are evaluated based on carcass performance of their progeny.
For a very long time this has been the standard method to predict breeding values to select parents in a
breeding program. First we assume that the progeny of animal i are all half-sibs. Before, we can use the
performance records of the progeny to predict breeding values for the parents, we have to correct them with
the appropriate mean performance. After the correction the progeny performance values are averaged for a
given parent. These mean performance values for a given parent i are called y; and are used to predict the
breeding values. Hence our index I for a given animal 7 is defined as

I = by; (4.12)

Because, we are only looking at a single trait, the aggregate genotype H corresponds to the single true
breeding value a of this trait and the economic weight w is 1. Now we are ready to set up the index normal
equations. In general these equations have the form

Pb=Gw (4.13)

where P corresponds to the variance-covariance matrix of the information sources in the index. Our index I as
defined in (4.12) contains just one source of information, namely the average y; of the progeny performance
values of animal 7. In general the phenotypic variance of the mean y of n progeny performance values
corresponds to

1+(n—1)t 4
- = (4.14)

<QUN

a

For our case with the progeny records, ¢ takes the value of %h2. For more details on how to compute 0’%, see
section 4.8. Hence the matrix P reduces to a single number

- 2
L+ (n—Dh/4 ,

P=o)= - . (4.15)
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The matrix G in (4.13) is the genetic covariance matrix between the traits in H and the information sources
in I. In our current example G = cov(a;, y;) = %05. For more details on how to compute G, see section
4.8.2. Now that we have all the components of (4.13), we can insert them and solve for b.

_ 2
1+ (n—1)h /402 “b— 102
n v 2
b 2nh?
44+ (n—1)h?
2n
= oy (4.16)
where k = 4;92.

With this the predicted breeding value d; for animal ¢ based on the average progeny performance values
using the index approach corresponds to

2n
i =1=0bx*(y; —p) = /i — 4.17
a * W =) = Wi ) (4.17)
The accuracy for the predicted breeding value in (4.17) is
n
= 4.18
rHI oy (4.18)

4.7 Appendix: Derivation of Index Normal Equations

In this section we want to show how to derive the index normal equations from the objective criterion in the
index construction procedure. The objective criterion was formulated in equation (4.3) as

U =FE(H -1)?> - min (4.19)

The derivation starts by inserting the definitions of H and I into (4.19).

U=FEH-I?*=FEH?-2xHx+I+1I?
= E(H?) -2+ E(H «I) + E(I%) (4.20)

Both the expected value E(H) of the aggregate genotype H and the expected value E(I) of the index are
both 0. This can be seen by the following expansion

E(H) = E(w"a) = w? x B(a) =w? x0=0 (4.21)

because the breeding values a are defined as deviations, there expected value F(a) is always 0. Similarly for
the index I, we mentioned that the components in the vector y denoting the information sources that enter
the index T are corrected by suitable population means. Due to this correction, we can state that E(y) =0
and thereby E(I) = 0. Using these results on the expected values of H and I, we can further develop (4.20)
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var(H) — 2 cov(H,I) 4+ var(I)

= var(wla) — 2 * cov(wT a,bTy) + var(d’y)

= wlvar(a)w — 2 x w cov(a,y")b + b var(y)b

= wlCw -2+ w’GTb + bT Pb (4.22)

where C' is the variance-covariance matrix of the true breeding values of the traits in the aggregated genotype,
GT is the genetic variance-covariance matrix between the traits in the aggregate genotype and the traits in
the index and P is the phenotypic variance-covariance matrix between the traits in the index. Hence we can
state

var(H) = w’ * C xw
cov(H, I) = w? « GT b
var(I) =b" « Pxb (4.23)

In the objective criterion in (4.19), we stated that ¥ should be minimized. This is done by computing the
derivative of ¥ with respect to the vector b. The solution vector b that sets that derivative to 0 corresponds
to the solution that we are looking for. The derivative of ¥ with respect to the vector b is also called the
gradient and can be computed as

ov
%:0—2*wT*GT+2bTP (4.24)
Setting (4.24) to 0 leads to
0=—2xwl «GT +26TP
w'GT =b"P
Pb = Guw (4.25)

The last line in (4.25) follows by transposing both sides of the second last line and because P is symmetric,
PT = P. As a result we obtain the index normal equations which can be solved for the unknown vector b
by pre-multiplying both sides with the inversion matrix P~! of P.

b= P 'Guw (4.26)
Because P is a variance-covariance matrix, it is guaranteed to be positive definite and its inverse P~! does

exist.

4.8 Appendix: Derivation of the Index Components for the Ex-
ample of the Mean Progeny Performance

4.8.1 Variance of Mean Progeny Performance

The mean performance values of a group of progeny for a given parent has the following structure
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1
vi=-o Z Yik (4.27)
k=1

where y;, is the corrected performance value of progeny k of animal 7. Each y; can be decomposed into

Yik = ak + €

1 1
=50 + 5 ddk + My + e (4.28)

The variance (0‘2) of a single phenotypic observation (y; x) of progeny k of parent ¢ can be computed as

) 11
o, = var(yi k) = var(iai + §ad’k +my + ex)

1 1
= var(aai) + var(ﬁad,k) + var(my) + var(eg)

1 1
= ivar(a) + Zvar(ad’k) + var(my) + var(ex)
1, 1

= 1% + Zvar(adyk) + var(my) + var(ex) (4.29)

In (4.29) we have assumed that all the pairwise covariances between the terms are 0. We define the intra-class
correlation ¢ which is the part of the total variance which is attributed to the permanent effect in the single
performance records.

_ 1/402 1.5

Inserting the decomposition of (4.28) into (4.27) leads to

N R
Yi=— Zyi,lc
n
k=1
1,1 1
= E Z(gal + §ad’k + my + ek;)
k=1
1
a

11 1 — 1 —
P 2z - 4.31

Taking the variance on both sides of (4.31) leads to our final result the variance (05) of the mean progeny
performance.
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1 1 -1 1 & 1 &
0’; =wvar(y;) = var(§ai + - Z §ad,k + - ka + - kZ:l ek)

1 1 "1 1 -
— var( ) + var( - 54d. k) + var( my) + var( - Z er)
k=1 k=1
1 1 1 1
= Zai + Evar(ad k) + —v var(my) + Evar(ek)
1, 1/1
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nxt+1—-t
=—— ° %o
n y
1+ (-1t
Lol (432)

Because, we saw earlier that ¢ = h?/4, we can insert that into (4.32) which brings us to the final result

1 —1)h2%/4
g2 = Lt (n—1h*/4 ("n W/, 52 (4.33)

QN

4.8.2 Covariance between True Breeding Value and Mean Progeny Performance
The set-up of the index normal equations requires the matrix G which corresponds to the genetic covariance

between the trait in the aggregate genotype and the information sources in the index. For the example with
the mean progeny performance values, the matrix G is defined as

§ IRS
G = cov(ai, §;) = cov(ay, - Zy”“)

k=1
= cov (ai,

l\D\H

1 n
a; *E {adk+mk+€k}>
n k=1
1
= cov(a;, iai)

(4.34)

Il
|
Q

n (4.34), we have used that the covariance between a; and all other components of y; x, except a; is 0.
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