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6.3 The Inverse Numerator Relationship Matrix

The general form of Henderson’s mixed model equations as shown in (5.10) depend on four matrices

1. Design matrix X for the fixed effects

2. Design matrix Z for the random effects

3. The inverse variance-covariance matrix R~! for the residuals e and

4. The inverse variance-covariance matrix G~! for the random breeding values a.
When using the animal model as described in section @ref(#animalmodel), we have seen in (6.1) that G
corresponds to the product of the numerator relationship matrix A and the genetic additive variance o2.
But the mixed model equations depend on the inverse G~! of G which means

Gl = (Ao = A s (6.3)

g

From (6.3) we can see that in order to be able to set up the mixed model equations for an animal model,
we need the inverse numerator relationship matrix A~'. Because in practical routine predictions of breeding
values, we have something in the order of 10 million animals that we predict breeding values for. Hence the
matrix A has 10 million rows and 10 million columns. A matrix of that size cannot be inverted explicitly
with commonly known methods such as described under https://en.wikipedia.org/wiki/Invertible matrix.
This would have been the end of the BLUP animal model, if not Henderson published in (Henderson, 1976)
a set of simple rules to directly construct the matrix A~! without setting up the numerator relationship
matrix.

6.4 Structure of A~!

When looking at a concrete example of an inverse of a numerator relationship matrix as shown below, we
can discover some important facts. Let us assume the following pedigree.

Table 6.2: Pedigree Used To Compute Inverse Numerator Relation-
ship Matrix

Calf Sire Dam

1 NA NA
2 NA NA
3 NA NA
4 1 2
5 3 2

The numerator relationship matrix A for the pedigree shown in Table ?? is shown in (6.4).

1.0000 0.0000 0.0000 0.5000 0.0000
0.0000 1.0000 0.0000 0.5000 0.5000
A= 0.0000 0.0000 1.0000 0.0000 0.5000 (6.4)
0.5000 0.5000 0.0000 1.0000 0.2500
0.0000 0.5000 0.5000 0.2500 1.0000

The matrix A~! shown below corresponds to the inverse of the matrix A from (6.4).
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1.5000  0.5000  0.0000 —1.0000  0.0000

0.5000  2.0000  0.5000 —1.0000 —1.0000

A7l = 0.0000  0.5000 1.5000  0.0000 —1.0000
—1.0000 —1.0000  0.0000  2.0000  0.0000

0.0000 —1.0000 —1.0000  0.0000  2.0000

From the above shown inverse A~!, we recognize that A~! has a simpler structure than A itself. The reason
for this is that non-zero elements occur only at matrix elements of A~! corresponding to parents and progeny
or to mates. Furthermore off-diagonal elements corresponding to mates are positive and elements correspond-
ing to parents and progeny are negative. These observations were used by Henderson in (Henderson, 1976)
to come up with the rules described below.

6.5 Henderson’s Rule To Set Up A~!

We denote the row or column index corresponding to an animal of interest as ¢ and the row or column index
belonging to the animals father as s and the row or column index corresponding to animal i’s mother as d.
The rules differentiate the following three cases

1. both parents of animal ¢ are known
2. only one parent of animal ¢ is known
3. both parents of animal ¢ are unknown

6.5.1 Both Parents Known

o add 2 to the diagonal-element (i, 1)
o add —1 to off-diagonal elements (s, 1), (i,s), (d,4) and (i,d)
o add 3 to elements (s, s), (d,d), (s,d), (d, s)

6.5.2 Only One Parent Known

We assume that sire s is known

« add 3 to diagonal-element (i,1)
« add —2 to off-diagonal elements (s,7), (i, s)
« add % to element (s, s)

6.5.3 Both Parents Unknown

o add 1 to diagonal-element (4,1%)

The application of Henderson’s rules to construct A~! directly will be a problem in one of the coming exercises.
When applying the above described rules, it has to be noted well that this simple version of the rules are
only valid for a pedigree without inbreeding. We will see in section @ref(#derivationofthendersonsrules) how
to extend the simple rules such that they can be used for a general pedigree with inbreeding.

6.6 Derivation of Henderson’s Rules

Henderson’s rules can be related to the so-called LDL-decomposition of the numerator relationship matrix
A. The result of this decomposition consists of the equivalence between matrix A and the product of three
matrices L, D and LT. The matrix L is a lower triangular matrix and the matrix D is a diagonal matrix.
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The reason for why we are doing this decomposition of A is that the matrices L and D can much easier
be inverted than the matrix A. The LDL-decomposition is a general procedure in linear algebra and it can
be applied to any symmetric and positive-definite matrix not only to numerator relationship matrices. But
when the LDL-decomposition is applied to a numerator relationship matrix, the matrices L and D do also
have a special genetic meaning. This meaning is revealed in the following derivation.

6.6.1 Decomposition of True Breeding Value and its Variance

The true breeding value (a;) of animal ¢ can be decomposed into the true breeding values of animal i’s
parents s and d and the mendelian sampling term m;

1 1
ai = 5as + 0d +m; (6.5)

Applying the decomposition shown in (6.10) for all animals in the pedigree and combining the decompositions
into a matrix-vector notation, we get

a=P-a+m (6.6)

where
a  vector of true breeding values for all animals
P matrix linking animals to their parents
m  vector of mendelian sampling terms

Equation (6.6) can be interpreted as regression of the true breeding values onto parental breeding values.
In such a regression the random term m is like a residual term. The genetic meaning of m corresponds
to the deviation of a; from the full-sib average of the true breeding values within the nuclear family with
parents s and d. The term m is called mendelian sampling term. The source of m is the fact that during
meiosis, parental alleles are randomly assigned to each progeny. Bulmer (Bulmer, 1971) has shown that m;
are independent from true breeding values of parents s and d. Using this result, we take the variance on
both sides of (6.10) leading to

1 1
var(a;) = var(§as + 5d +my)

1 1 1
= Zvar(as) + Zvar(ad) + icov(as, aq) + var(m;) (6.7)

From (6.1) together with the definition of the numerator relationship matrix A, we know that

var(a;) = (1 + Fy)o?
var(as) = (14 Fy)o?
var(aq) = (1 + Fy)o?
cov(ag, ag) = (A)sq02 = 2F;0> (6.8)

6.6.2 Variance of Mendelian Sampling Terms

Inserting the relations from (6.8) into (6.7) and solving for var(m;) gives the following result
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1 1 1
var(m;) = var(a;) — Zvar(as) - Zvar(ad) - §cov(as, aq)

1 1 1
:(L+Epﬁ—1G+Fgﬁ—tﬂl+ﬂmﬁ—§*2*ﬂ*&

a

@hg+m0ﬁ (6.9)

In case where only parent s of animal ¢ is known the terms in (6.10) and (6.9) change to

1 1
ai = 5as + 4d +m; (6.10)
1
a; = §a5 +m;
1 2
var(m;) = (1— 1(1 + Fy) | o
3 1
=(Z—-Z2F,) o2 11
(3-1r)e (6.1
When both parents are unknown, we get
a; =m;
var(m;) = o2 (6.12)

6.6.3 Decomposition of A

The true breeding values a, of sire s and a4 of dam d can be decomposed in a similar way as shown for the
true breeding value a; in (6.10).

as = iass + iafds + mg
1 1
4d = 50sd + 5 dd + mg (6.13)

where
ss sire of s
ds dam of s
sd sire of d
dd dam of d

Using (6.13) together with (6.10) leads to the following expression for a;

ai:§as+§ad+mi

L+ 2ads M) + 2 (S + 2aga+ma) +
2 Qss 2 QAds T Mg 9\9 QAsd 9 Qadd T Mq mg

1

1 1 1 1
= —Qss + —Qds + —0sq + —Qgq + zMs + Mg +m;

2
4 4 4 4 2 2
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This type of decomposition can also be done for the grand-parents of animal 7 and further back until we get
to true breeding values of animals with unknown parents. Animals of ancestor generations with unknown
parents are called founder population. The process of decomposing true breeding values back through all
generations of a pedigree is called recursive decomposition of animal ¢’s true breeding value. Because we
know from (6.12) that the decomposition of true breeding values aj for an animal k with unknown parents
is ap = my, the result of the recursive decomposition of a; is a sum of mendelian sampling terms linking the
ancestors of ¢ back to the founder population.

Ordering all animals in a pedigree according to their age and writing the result of the recursive decomposition
of all true breeding values in matrix-vector notation leads to

a=L-m (6.14)

The matrix L is a lower triangular matrix. The row corresponding to animal i is the average of the rows
in L corresponding to parents s and d of i. The matrix L contains the path of the gene flow from the base
population to all animals in the population. From equation (6.14), we are computing the variance of all true
breeding values which leads to

var(a) = var(L - m)
=L -var(m)-L"
=L-(Do?) - LT
=L-D-L"s? = Ac?

a

From (??), the LDL-decomposition of A follows directly as A = LDLT. The single components m; are
independent of each other. This also means that cov(m;,m;) = 0 for ¢ # j. Hence the matrix D is
a diagonal matrix. In section Qref(#variancemendeliansamplingterm) we have seen that var(m;) always
contain o2 as a factor. Hence it is reasonable to express var(m) as a product of a diagonal matrix D times

a
the genetic additive variance 02. The diagonal elements of matrix D are computed as shown in section

Q@ref(#variancemendeliansamplingterm).

The mixed model equations require the inverse numerator relationship matrix A='. Thanks to the LDL-
decomposition of A, we can compute A~! as

At =(@-D- LTy =) t.p7t. 7! (6.15)
The inverse D! is easy to compute, because D is a diagonal matrix. As a consequence of that D! is also a
diagonal matrix where the elements (D~1);; correspond to the inverse of the elements of the original matrix

D,ie. (D7) =1/(D)s. The matrix L~! is also a lower triangular matrix and can easily computed based
on the two relations for the vector m. Based on (6.6), we know

m=a—Pa=(I—P)a (6.16)
and from (6.14), we get
m=L"ta (6.17)
Setting both expressions for m in (6.16) and (6.17) equal can be used to obtain L~!
m= (I —Pla=L""a (6.18)

Therefore,
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L '=I-P (6.19)

6.6.4 General Version of Henderson’s Rule

Based on the decomposition of A~ shown in (6.15), the general version of Henderson’s rule where inbreeding
of animals can be accounted for can be summarized as

o Start with a matrix A=! where all elements are set to 0.
o Let d’ be the i-th diagonal element of D~ for animal i, assuming i has parents s and d.
o Then add the following contributions to A~*

— d' to the element (i,1)

— —d'/2 to the elements (s, i), (i,s), (d,i), (i,d)

— d'/4 to the elements (s, s), (s,d), (d, s), (d,d)

The contributions to rows and columns corresponding to parents s and d are only added, if they are known.
Because the elements d* are dependent on the inbreeding coefficients Fs and Fy of parents s and d, we have
to find an efficient way to compute inbreeding coefficients for all animals in a population.

6.7 Computing Inbreeding Coefficients

Inbreeding coefficients can be computed using different methods. From all these methods, we are just showing
the one method which was described in (Quaas, 1976). This method is based on the properties of a second
decomposition of the numerator relationship matrix A which is called the cholesky decomposition. The
cholesky decomposition of a matrix A corresponds to

A=RR" (6.20)

where the matrix R is a lower triangular matrix. At this point we have to be clear about this. In practical
routine evaluations, we will not explicitly compute this decomposition, because we do not want to construct
A explicitly. We are just using the properties of (6.20) to find an efficient way to compute the diagonal
elements (A);; of A without constructing the complete matrix A. The diagonal elements (A);; are important,
because they contain the inbreeding coefficients (F;), as (A); = 1+ F;. Based on (6.20), (A);; can be
computed from the components of R as

(A)is = Z(R)fj (6.21)

This can be shown with a small 3 x 3 matrix A

(A)11 (A)12 (A)13 (R)11 0 0 (R)11 (R)21 (R)31
(A)21 (A)22 (A)23 | =| (R)21 (R)22 0 « |0 (R)22 (R)32
(A)31 (A)32 (A)33 (R)31 (R)32 (R)33 0 0 (R)33
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This shows that diagonal elements (A);; can be computed using just all the components of row 7 in R up to
the diagonal. Next, we have to show how to compute the components of R.

6.7.1 Recursive Computation of R

We are setting the two decompositions of A equal which leads to

A=R*R'=LxDxL" (6.22)

Let us write the matrix R as a product of two matrices L and S where L corresponds to the matrix from
the LDL-decomposition and insert that product into (6.22)

A=R+R' =LxS*(LxS) =LxS*xST+«LT =L+DxL" (6.23)

From (6.23), we conclude that D = S - ST where S is also a diagonal matrix with elements (S);; = /(D).
For our small example we get

(R)11 0 0 0 0 ($)11 0 0
(R)21 (R)22 0 = | (L)21 1 0|=]o0 ($)22 0 (6.24)
(R)31 (R)32 (R)33 (L)31 (L)32 1 0 0 (5)33

From (6.24), we can see that the diagonal elements (R);; are equal to (S);;. Therefore

~—

(R)is = ()i = V(D) (6.25)

Earlier, we have seen that diagonal elements (D);; of D correspond to

(D=5 — 3 (Fk Fa) = 1= 0.25((A)s + (A)a) (6.26)

DN | =

and hence

(R)ii = /1= 0.25((A)ss + (A)aa) (6.27)

The components (A)gs and (A)qq correspond to diagonal elements of A of parents of s and d which were
computed earlier.

The off-diagonal elements of R are computed as

(R)ij = (L)ij * (9); (6.28)

One property of the matrix L is that any element (L);; is equal to the average of elements (L)s; and (L)g;,
if s and d are parents of animal . Using this we get

(R)ij =

—~

L) * (8);;
((L)sj + (L)aj) * (55

((R)sj + (R)aj) (6.29)

N~ N~

With that we have shown how to compute all elements of R recursively. This requires an ordering of all
animals according to their age.
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