Livestock Breeding and Genomics - Exercise 7

Peter von Rohr

2018-11-09

Problem 1: Predict Breeding Values Using Selection Index

The data set from exercise 6 was extended by an own performance record for our selection candidate i. The new data set is shown in the table below. Predict the breeding value a_i for animal i using all available information using the selection index.

We assume that our selection candidate *i* has animals 1 and 2 as parents and the observation for our selection candidate is shown last in the above table as Measurement 10. The heritability is assumed to be $h^2 = 0.36$ and the phenotypic standard deviation corresponds to $\sigma_y = 31.8$. The population mean μ is assumed to be 250.4.

Animal	Sire	Dam	Weight
4	1	2	270.10
5	1	2	263.52
6	1	3	221.49
7	1	3	280.41
8	1	3	215.75
9	1	3	292.45
10	1	2	187.56

Table 1: Phenotypic Measurements for Full-Sibs, Half-Sibs and anOwn Performance Record

Figrure 1 shows the structure of the data shown in Table 1.

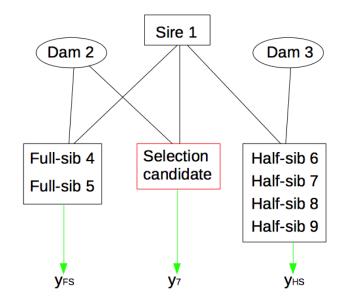


Figure 1: Information Sources To Predict Breeding Values

Problem 2: Sire Model

We are using the following dataset shown in Table 2 to predict breeding values using a sire model.

Animal	Sire	Dam	Herd	Weaning Weight
12	1	4	1	2.61
13	1	4	1	2.31
14	1	5	1	2.44
15	1	5	1	2.41
16	1	6	2	2.51
17	1	6	2	2.55
18	1	7	2	2.14
19	1	7	2	2.61
20	2	8	1	2.34
21	2	8	1	1.99
22	2	9	1	3.10
23	2	9	1	2.81
24	2	10	2	2.14
25	2	10	2	2.41
26	3	11	2	2.54
27	3	11	2	3.16

Table 2: Example Data Set for Weaning Weight in Beef Cattle

Your Tasks

• Specify the sire model for the dataset given in Table 2.

_

- Besides the model indicate also the expected values and the variances for all the random components in the model.
- Set up the mixed model equations for the sire model and compute the estimates for the fixed effects (Herd) and the predicted breeding values for the sires.

Assumptions

We assume that the sires are unrelated and that the genetic additive variance $\sigma_a^2 = 0.0254$. Hence the variance-covariance matrix G of all sire effects corresponds to

$$var(s) = G = I * \sigma_s^2 = I * \frac{\sigma_a^2}{4}$$

Furthermore, the residuals e are not correlated which means that the variance-covariance matrix R is

$$var(e) = R = I * \sigma_e^2$$

with $\sigma_e^2 = 0.076$.