Special Matrices

Peter von Rohr

10/19/2018

Transpose

- For any matrix $A_{m,n}$ its **transpose** is called A^T
- A^T is a matrix with *n* rows and *m* columns
- Element $(A)_{ij}$ in A corresponds to element $(A^T)_{ji}$ in A^T
- ► In R:

 $(A \leftarrow matrix(c(1:6), nrow = 3, ncol = 2, byrow = TRUE))$ ## [,1] [,2] ## [1,] 1 2 ## [2,] 3 4 ## [3,] 5 6 t(A)## [,1] [,2] [,3] ## [1,] 1 3 5 ## [2,] 2 4 6

Symmetric Matrices

- Matrices which are identical to its transpose are called symmetric
- Hence for a symmetric matrix S

$$S = S^T$$

S					
##	[,1]	[,2]			
## [1,]	35	44			
## [2,]	44	56			
t(S)					
##	[,1]	[,2]			
## [1,]	35	44			
## [2,]	44	56			

Identity Matrix

- ► Name: *I_n*
- ▶ Dimensions: *n* × *n*
- Example n = 3

$$I_3 = \left[\begin{array}{rrrr} 1.00 & 0.00 & 0.00 \\ 0.00 & 1.00 & 0.00 \\ 0.00 & 0.00 & 1.00 \end{array} \right]$$

► In R:

diag(1, nrow = 3, ncol = 3)

##		[,1]	[,2]	[,3]
##	[1,]	1	0	0
##	[2,]	0	1	0
##	[3,]	0	0	1

Importance of I_n

- Neutral element of matrix multiplication
- ► For any matrix *A_{m,n}*:

$$A \cdot I_n = I_m \cdot A = A$$

Diagonal Matrices

- Matrices with non-zero elements only on diagonal
- Diagonal matrices are symmetric
- ► In R:

```
D <- diag(c(5,8,-3))
D</pre>
```

##		[,1]	[,2]	[,3]
##	[1,]	5	0	0
##	[2,]	0	8	0
##	[3,]	0	0	-3

Inverse Matrix

► The matrix B is called the inverse of matrix A, if their product A · B is the identity matrix I

$$A \cdot B = I$$

* If it exists, the inverse matrix of matrix A is called A^{-1} * In R the inverse of matrix S is computed as:

solve(S)

##		[,1]	[,2]
##	[1,]	2.333333	-1.833333
##	[2,]	-1.833333	1.458333