Livestock Breeding and Genomics

Peter von Rohr

21 September 2018

Content

- Introduction to course
- Linear Algebra
- Introduction to R/RStudio

Who Is Who

- Your name
- Study Major
- Why this course
- ▶ Previous experiences in / R / statistics / ...

Goals

- Understanding the basics
- Be able to exlpain certain phenomena (see next slide)
- Better understanding of statistics
- Exercises in R

Comments from farmers

- "Deep cow families" (Schweizer Bauer https://www.schweizerbauer.ch/tiere/milchvieh/ eine-komplette-kuh-zuechten-17854.html)
- "I have not met anybody who can explain the concept of a breeding value. My cow has a breeding value of -900 and still gives milk." (Leserbrief im Schweizer Bauer)

Information

- Website: https://charlotte-ngs.github.io/LBGFS2018/
- Credit points: Written exam on 21.12.2018

Lecture plan

- ► Type G
- From next week:
 - exercise hour: 9-10
 - lecture: 10-12

Course program

Week	Date	Торіс
1	21.09	Introduction to Livestock Breeding and Genomics
2	28.09	Quantitative Genetics/Single Locus
3	05.10	Genetic Evaluation with Different Sources of Information
4	12.10	Genetic Covariance Between Relatives
5	19.10	Best Linear Unbiased Prediction - Univariate Analysis
6	26.10	Best Linear Unbiased Prediction - Multivariate Analysis
7	02.11	Models with Random Environmental Effects
8	09.11	Analysis of Longitudinal Data
9	16.11	Variance Components Estimation
10	23.11	Linkage Disequilibrium
11	30.11	Genomic Selection
12	07.12	Genom-Wide Association Studies
13	14.12	Questions, Test Exam
14	21.12	Exam

Prerequisites

- None
- all concepts will be explained
- Helpful are
 - quantitative genetics
 - statistics
 - linear algebra
 - ► R

Exercises

- Topics of each lecture are repeated in exercise
- Exercise hours can be used to work on problems
- Solutions are presented one week later
- Exercise platform: http://r4tea.rteastem.org:8787

Your experiences

- Do you know any programming languages, if yes which one?
- What tools are you using when you work with data (projects, BSc thesis, MSc thesis)
- Were there any lectures in which you got in contact with programming languages, which ones?
- Are you interested in learning how to program?

Introduction to Livestock Breeding

Terminology

- Livestock breeding
- Animal breeding
- Ambiguous use
- History
 - Traditional breeding
 - Genomics

Fundamental Questions

- What is the best animal?
- How to find it?

Phenotypes and Genotypes

$$P = G + E$$

where P and E are observed and G is unknown

Improving Animal Populations

- \blacktriangleright Improvement via breeding \rightarrow long-term
- Two tools
- 1. selection
 - process to determine parents of next generation
 - natural selection in wildlife and livestock
 - artificial selection in livestock: fix a goal and rank
- 2. mating
 - which animal is bred to which
 - extreme
 - complementary
 - heterosis crossbreeding

Statistics

- BLUP
- Bayesian methods

Computer Science

- Methods have been developed in 1940's 1950's
- Progress occured later
- Development of cheap computing power

Milk Yield

Milk Performance per Cow

(Source: https://hoards.com/article-20808-what-will-dairy-cows-andfarms-look-like-in-50-years.html)

Computer Performance

Moore's Law – The number of transistors on integrated circuit chips (1971-2016)

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. This advancement is important as other aspects of technological progress – such as processing speed or the price of electronic products – are strongly linked to Moore's law.

Data source: Wikipedia (https://an.wikipedia.org/wiki/'hansistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Source: https://en.wikipedia.org/wiki/Moore%27s_law

Licensed under CC-BY-SA by the author Max Roser.