BLUP

Peter von Rohr

26 Oktober 2018

General Principle

- ▶ All methods to predict breeding values follow the same principle
- 1. Correct information sources for some population mean
- 2. Multiply corrected information source by an appropriate factor
- Regression Method

$$\hat{a} = b(y - \mu)$$

Selection Index

$$\hat{a} = I = b^T y^*$$

where $b = P^{-1}Gw$ and y^* corrected information sources.

Problem with Correction

Population mean is ideal as correction

$$y = \mu + a + e$$
 \rightarrow $\bar{y} = \bar{\mu} + \bar{a} + \bar{e} = \mu$

- Because performances are observed in different
 - environments and
 - time points
- ► Formation of comparison groups where animals are exposed to the same environments
- ► The more groups, the better the correction of environmental effects
- ► The more groups, the smaller the single groups

Bias

- With small comparison groups, it is more likely that mean breeding value of animals in a single group is not 0
- Average performance of all animals in a comparison group

$$\bar{y}_{CG} = \mu + \bar{a}_{CG} + \bar{e}_{CG}$$

* If \bar{a}_{CG} is not 0, the predicted breeding value \hat{a}_i of animal i is

$$\hat{a}_i = I = b(y_i - (\mu + \bar{a}_{CG}))$$

$$= b(y_i - \mu) - b\bar{a}_{CG}$$

$$= \hat{a}_i - b\bar{a}_{CG}$$

where $b\bar{a}_{CG}$ is called bias.

Solution - BLUP

- Solution to correction problem in selection index: BLUP
- Estimates environmental effects at the same time as breeding values are predicted
- Linear mixed effects model
- Meaning of BLUP
 - **B** stands for **best** which means that the correlation between the true (a) and the predicted breeding value (â) is maximal or the prediction error variance $(var(a \hat{a}))$ is minimal.
 - ▶ **L** stands for **linear** which means the predicted breeding values are linear functions of the observations (*y*)
 - U stands for unbiased which means that the expected values of the predicted breeding values are equal to the true breeding values
 - P stands for prediction

Numeric Example

Animal	Sire	Dam	Herd	Weaning Weight
12	1	4	1	2.61
13	1	4	1	2.31
14	1	5	1	2.44
15	1	5	1	2.41
16	1	6	2	2.51
17	1	6	2	2.55
18	1	7	2	2.14
19	1	7	2	2.61
20	2	8	1	2.34
21	2	8	1	1.99
22	2	9	1	3.10
23	2	9	1	2.81
24	2	10	2	2.14
25	2	10	2	2.41
26	3	11	2	2.54
27	3	11	2	3.16

Linear Mixed Effects Model

Simple linear model

$$y_{ij} = \mu + herd_j + e_{ij}$$

- Result: Estimate of effect of herd j
- ▶ What about breeding value a_i for animal i?
 - Problem: breeding values have a variance σ_a^2
 - ▶ Cannot be specified in simple linear model
- → Linear Mixed Effects Model (LME)

$$y_{ijk} = \mu + \beta_j + u_i + e_{ijk}$$

Matrix-Vector Notation

- ► LME for all animals of a population
- \rightarrow use matrix-vector notation

$$y = X\beta + Zu + e$$

where

- y vector of length n of all observations
 - β vector of length p of all fixed effects
 - X $n \times p$ design matrix linking the fixed effects to the observations
- u vector of length n_u of random effects
- $Z = n \times n_u$ design matrix linking random effect to the observations
- e vector of length *n* of random residual effects.

Expected Values and Variances

Expected values

$$E(u) = 0$$
 and $E(e) = 0 \rightarrow E(y) = X\beta$

Variances

$$var(u) = G$$
 and $var(e) = R$

with $cov(u, e^T) = 0$,

$$var(y) = Z * var(u) * Z^T + var(e) = ZGZ^T + R = V$$

The Solution

$$\hat{u} = GZ^T V^{-1} (y - X\hat{\beta})$$

$$\hat{\beta} = (X^T V^{-1} X)^{-1} X^T V^{-1} y$$

Mixed Model Equations

$$\begin{bmatrix} X^T R^{-1} X & X^T R^{-1} Z \\ Z^T R^{-1} X & Z^T R^{-1} Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^T R^{-1} y \\ Z^T R^{-1} y \end{bmatrix}$$

Sire Model

▶ Breeding value of sire as random effect:

$$y = X\beta + Zs + e$$

Example

$$\begin{bmatrix} 2.61 \\ 2.31 \\ 2.44 \\ 2.41 \\ 2.51 \\ 2.55 \\ 2.14 \\ 2.61 \\ 2.34 \\ 1.99 \\ 3.10 \\ 2.81 \\ 2.14 \\ 2.41 \\ 2.54 \\ 3.16 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Animal Model

▶ Breeding value for all animals as random effects

$$y = X\beta + Za + e$$