Genetic Covariances Between Animals

Peter von Rohr

02 November 2018

BLUP Animal Model

- Traditional prediction of breeding values
 - i.e. no genomic information available
 - de-facto standard method
- Model recap

$$y = X\beta + Za + e$$

where

- y vector of length *n* of phenotypic information
- β vector of length *p* of unknown fixed effects
- $X \quad n \times p$ incidence matrix
- a vector of length q of unknown random breeding values
- $Z \quad n \times q$ incidence matrix
- e vector of length n of unknown random residuals

Numerical Example

Calf	Sire	Dam	Herd	WWG
3	1	2	1	4.5
4	1	NA	2	2.9
5	4	3	2	3.9
6	5	2	1	3.5

Animal Model Setup

- Convert information from data into model
- Put observations in vector y

$$y = \begin{bmatrix} 4.5\\2.9\\3.9\\3.5\end{bmatrix}$$

Fixed effects such as herd go in vector β and X links observations to components in β

$$X = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 1\\ 1 & 0 \end{bmatrix}, \ \beta = \begin{bmatrix} \beta_1\\ \beta_2 \end{bmatrix}$$

Breeding Values As Random Effects and Residuals

$$Z = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, a = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \\ a_5 \\ a_6 \end{bmatrix}, e = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{bmatrix}$$

Putting Everything Together

$$\begin{bmatrix} 4.5\\ 2.9\\ 3.9\\ 3.5 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} \beta_1\\ \beta_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_1\\ a_2\\ a_3\\ a_4\\ a_5\\ a_6 \end{bmatrix} + \begin{bmatrix} e_1\\ e_2\\ e_3\\ e_4 \end{bmatrix}$$

Solution with Mixed Model Equations

General form

$$\begin{bmatrix} X^{\mathsf{T}}R^{-1}X & X^{\mathsf{T}}R^{-1}Z \\ Z^{\mathsf{T}}R^{-1}X & Z^{\mathsf{T}}R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{a} \end{bmatrix} = \begin{bmatrix} X^{\mathsf{T}}R^{-1}y \\ Z^{\mathsf{T}}R^{-1}y \end{bmatrix}$$

• Assume $R = I * \sigma_e^2$ and we set $G = A * \sigma_a^2$

$$\begin{bmatrix} X^T X & X^T Z \\ Z^T X & Z^T Z + \lambda * A^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{a} \end{bmatrix} = \begin{bmatrix} X^T y \\ Z^T y \end{bmatrix}$$

with $\lambda=\sigma_{e}^{2}/\sigma_{a}^{2}$

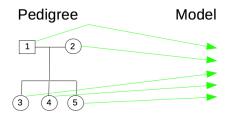
Components of Mixed Model Equations

Numerator Relationship Matrix

- Only component missing in mixed model equations: matrix A
- A is called the numerator relationship matrix
- Properties of A

$$var(a) = G = A * \sigma_a^2$$

Meaning of A



Variance-Covariance

	a 1	a 2	a 3	a_4	a 5
aı	var(a1)	cov(a1,a2)	cov(a1,a3)	cov(a1,a4)	cov(a1,a5)
a 2		var(a2)	cov(a2,a3)	cov(a2,a4)	cov(a2,a5)
a 3			var(a3)	cov(a3,a4)	cov(a3,a5)
\mathbf{a}_4				var(a4)	cov(a4,a5)
a 5					var(a5)

Elements of A

- ▶ Diagonal elements (A)_{ii} = 1 + F_i where F_i: inbreeding coefficient of i
- Offdiagonal elements $(A)_{ij} = cov(a_i, a_j)/\sigma_a^2$
- Symmetric
- Definition leads to recursive algorithm for computing components of A