Selection Index To Predict Breeding Values

Peter von Rohr

02 November 2018

Prediction of Breeding Values Using Selection Index

- Goal: predict breeding value for one trait by selection index I = b^T * y*
- Index Normal Equations

$$Pb = Gw$$

Set aggregate genotype H to just one trait

$$H = a$$
 and $w = 1$

Leads to

$$Pb = G$$
 and $b = P^{-1}G$

Example: Own Performance

- Available source of information:
 - one own performance record
 - on the same trait as in H and
 - for which we want to predict breeding values for
- Always the same strategy
 - Determine P and G and compute b
 - Compute I
- For our example:
 - ▶ *P* is the variance-covariance between all information source
 - phenotypic own performance record as the only information
 - $\blacktriangleright P = \sigma_v^2$
 - ► G: covariance between true breeding value and information source
 - $G = cov(a, y^*) = cov(a, a + e) = cov(a, a) + cov(a, e) = \sigma_a^2$
 - $\blacktriangleright b = P^{-1}G = \frac{\sigma_a^2}{\sigma_y^2} = h^2$
 - $\hat{a}_i = I = b * y^* = h^2 * (y \mu)$

Example: Repeated Records

Problem 1 in Exercise 6

Combining Information

- Examples so far: nice to confirm what we knew already
- Interesting property of selection index
 - Combine different information sources
- Example: Predict Breeding value for animal *i* based on
 - Average of two full-sib records
 - Average of four half-sib records

Records of Full- and Half-Sibs

Data

Sire	Dam	Weigth
1	2	270.10
1	2	263.52
1	3	221.49
1	3	280.41
1	3	215.75
1	3	292.45
	Sire 1 1 1 1 1 1	Sire Dam 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3

Compute Matrix P

$$P = \begin{bmatrix} var(\bar{y}_{FS}) & cov(\bar{y}_{FS}, \bar{y}_{HS}) \\ cov(\bar{y}_{FS}, \bar{y}_{HS}) & var(\bar{y}_{HS}) \end{bmatrix}$$
$$var(\bar{y}_{FS}) = \frac{1 + (n_{FS} - 1)h^2/2}{n_{FS}} * \sigma_y^2$$
$$var(\bar{y}_{HS}) = \frac{1 + (n_{HS} - 1)h^2/2}{n_{HS}} * \sigma_y^2$$
$$cov(\bar{y}_{FS}, \bar{y}_{HS}) = \frac{1}{4}h^2\sigma_y^2$$

Compute Matrix G

$$G = \begin{bmatrix} cov(a_i, \bar{y}_{FS}) \\ cov(a_i, \bar{y}_{HS}) \end{bmatrix}$$
$$cov(a_i, \bar{y}_{FS}) = \frac{1}{2}\sigma_a^2$$
$$cov(a_i, \bar{y}_{HS}) = \frac{1}{4}\sigma_a^2$$

Problem 2 in Exercise 6

- Compute b
- Compute $\hat{a}_i = I = b^T y^*$

$$y^* = \left[\begin{array}{c} \bar{y}_{FS} - \mu \\ \bar{y}_{HS} - \mu \end{array} \right]$$