Inverse Numerator Relationship Matrix and Inbreeding

Peter von Rohr

16 November 2018

Inverse of A Based on L and D

- \blacktriangleright Matrix A was decomposed into $A = L \cdot D \cdot L^T$
- ► Get A^{-1} as $A^{-1} = (L^{\mathcal{T}})^{-1} D^{-1} L^{-1}$
- \blacktriangleright D^{-1} is diagonal again with elements

$$
(D^{-1})_{ii}=1/(D)_{ii}
$$

Inverse of L

 \triangleright Compute *m* based on the two decompositions of a

$$
a = P \cdot a + m \quad \text{and} \quad a = L \cdot m
$$

 \triangleright Solve both for *m* and set them equal

$$
m = a - P \cdot a = (I - P) \cdot a \quad \text{and} \quad m = L^{-1} \cdot a
$$

$$
(I - P) \cdot a = L^{-1} \cdot a
$$

and

$$
L^{-1}=I-P
$$

Example

Matrix D^{-1}

 \blacktriangleright Because D is diagonal

$$
D = \left[\begin{array}{cccccc} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.5 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0.5 \end{array}\right]
$$

 \blacktriangleright We get D^{-1} as

$$
D^{-1} = \left[\begin{array}{cccccc} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 2.0 & 0.0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 2.0 \end{array}\right]
$$

Matrix L^{-1}

 \blacktriangleright Use $L^{-1} = I - P$

 \blacktriangleright Matrix P from simple decomposition

 0*.*0 0*.*0 0*.*0 0*.*0 0*.*0 0*.*0 0*.*0 0*.*0 0*.*0 0*.*0 P = 0*.*0 0*.*0 0*.*0 0*.*0 0*.*0 0*.*5 0*.*5 0*.*0 0*.*0 0*.*0 0*.*0 0*.*5 0*.*5 0*.*0 0*.*0

 \blacktriangleright Therefore

$$
L^{-1} = I - P = \begin{bmatrix} 1.0 & 0.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 1.0 & 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 1.0 & 0.0 & 0.0 \\ -0.5 & -0.5 & 0.0 & 1.0 & 0.0 \\ 0.0 & -0.5 & -0.5 & 0.0 & 1.0 \end{bmatrix}
$$

Decomposition of A^{-1} I

$$
A^{-1} = (L^{-1})^T \cdot D^{-1} \cdot L^{-1}
$$

\n
$$
(L^{-1})^T \cdot D^{-1}
$$

\n1.0 0.0 0.0 -0.5 0.0
\n0.0 1.0 0.0 -0.5 -0.5
\n0.0 0.0 1.0 0.0 -0.5
\n0.0 0.0 1.0 0.0 -0.5
\n0.0 0.0 0.0 1.0 0.0
\n0.0 0.0 0.0 1.0 0.0
\n0.0 0.0 0.0 0.0 0.0
\n0.0 0.0 0.0 0.0 0.0 0.0 2.0
\n0.0 0.0 0.0 0.0 2.0

Decomposition of A^{-1} II

Henderson's Rules

▶ Both Parents Known

- \triangleright add 2 to the diagonal-element (i, i)
- \triangleright add -1 to off-diagonal elements (s, i) , (i, s) , (d, i) and (i, d)
- \blacktriangleright add $\frac{1}{2}$ to elements (s, s) , (d, d) , (s, d) , (d, s)
- ► Only One Parent Known
	- add $\frac{4}{3}$ to diagonal-element (i, i)
	- ► add $-\frac{2}{3}$ to off-diagonal elements (s, i) , (i, s)
	- add $\frac{1}{3}$ to element (s, s)
- \blacktriangleright Both Parents Unknown
	- \triangleright add 1 to diagonal-element (i, i)
- \blacktriangleright Valid without inbreeding

Inbreeding

- Elements in matrix D depend on coefficients of inbreeding
- Recap: From the simple decomposition of a , we derived

$$
var(m_i) = \left(\frac{1}{2} - \frac{1}{4}(F_s + F_d)\right)\sigma_a^2
$$

= $\left(\frac{1}{2} - \frac{1}{4}(A_{ss} - 1 + A_{dd} - 1)\right)\sigma_a^2$
= $\left(1 - \frac{1}{4}(A_{ss} + A_{dd})\right)\sigma_a^2$
= $(D)_{ii}\sigma_a^2$

$$
\rightarrow (D)_{ii} = \left(\frac{1}{2}-\frac{1}{4}(F_s + F_d)\right) = \left(1 - \frac{1}{4}(A_{ss} + A_{dd})\right)
$$

Computation of Coefficients of Inbreeding

- \triangleright Observation: Coefficients of inbreeding F_s and F_d can be read from $(A)_{ss}$ and $(A)_{dd}$ of A
- \triangleright Cannot setup A to just get inbreeding coefficients
- \blacktriangleright More efficient method required
- \triangleright **Cholesky** decomposition of A

$$
A = R \cdot R^T
$$

where R is a lower triangular matrix

Hint: Function cho1(A) in R gives matrix R^{T}

Cholesky Decomposition

 \blacktriangleright Diagonal elements $(A)_{ii}$ of A are the sum of the squared elements of one row of R

$$
(A)_{ii} = \sum_{j=1}^{i} (R)_{ij}^2
$$

$$
\left[\begin{array}{ccc} (A)11 & (A)12 & (A)13 \\ (A)21 & (A)22 & (A)23 \\ (A)31 & (A)32 & (A)33 \end{array}\right] = \left[\begin{array}{ccc} (R)11 & 0 & 0 \\ (R)21 & (R)22 & 0 \\ (R)31 & (R)32 & (R)33 \end{array}\right] \cdot \left[\begin{array}{ccc} (R)11 & (R)21 & (R)31 \\ 0 & (R)22 & (R)32 \\ 0 & 0 & (R)33 \end{array}\right]
$$

Recursive Computation of R

External Let us write the matrix R as a product of two matrices L and S:

$R = L \cdot S$

where L is the same matrix as in the LDL-decompositon and S is a diagonal matrix.

 \blacktriangleright Compute A as

$$
A = R \cdot R^T = L \cdot S \cdot S \cdot L^T = L \cdot D \cdot L^T
$$

 \blacktriangleright Hence

$$
D=S\cdot S\quad\rightarrow\quad (S)_{ii}=\sqrt{(D)_{ii}}
$$

Example

$$
\left[\begin{array}{ccc} (R)11 & 0 & 0 \\ (R)21 & (R)22 & 0 \\ (R)31 & (R)32 & (R)33 \end{array}\right] = \left[\begin{array}{ccc} 1 & 0 & 0 \\ (L)21 & 1 & 0 \\ (L)31 & (L)32 & 1 \end{array}\right] \cdot \left[\begin{array}{ccc} (5)11 & 0 & 0 \\ 0 & (5)22 & 0 \\ 0 & 0 & (5)33 \end{array}\right]
$$

 \blacktriangleright Diagnoal elements $(R)_{ii} = (S)_{ii}$

 \blacktriangleright Because $(\mathcal{S})_{ii} = \sqrt{(\mathit{D})_{ii}}$, if parents s and d are known diagonal elements $(R)_{ii}$ of matrix R can be computed as

$$
(R)_{ii} = (S)_{ii} = \sqrt{(D)_{ii}} = \sqrt{\left(1 - \frac{1}{4}(A_{ss} + A_{dd})\right)}
$$

 \blacktriangleright A_{ss} and A_{dd} are

- \triangleright 0 if s and d are unknown (NA) or
- \blacktriangleright have been computed before

Recap matrix D

 \triangleright Both parents s and d of animal i are known

$$
(D)_{ii} = \frac{1}{2} - \frac{1}{4}(F_s + F_d) = \frac{1}{2} - \frac{1}{4}((A)_{ss} - 1 + (A)_{dd} - 1) = 1 - \frac{1}{4}((A)_{ss} + (A)_{dd})
$$

 \blacktriangleright Parent s of animal *i* is known

$$
(D)_{ii} = \frac{3}{4} - \frac{1}{4}F_s = \frac{3}{4} - \frac{1}{4}((A)_{ss} - 1) = 1 - \frac{1}{4}(A)_{ss}
$$

 \blacktriangleright Both parents unknown

$$
(D)_{ii}=1
$$

Offdiagonal Elements of R

 \triangleright Offdiagnoal elements $(R)_{ii}$ of R are computed as

$$
(R)_{ij}=(L)_{ij}*(S)_{jj}
$$

 \blacktriangleright Use property of L: $L_{ij} = \frac{1}{2}$ $\frac{1}{2}((L)_{sj}+(L)_{dj})$ if s and d are parents of i

$$
(R)_{ij} = (L)_{ij} * (S)_{jj}
$$

= $\frac{1}{2} [(L)_{sj} + (L)_{dj}] * (S)_{jj}$
= $\frac{1}{2} [(L)_{sj} * (S)_{jj} + (L)_{dj} * (S)_{jj}]$
= $\frac{1}{2} [(R)_{sj} + (R)_{dj}]$

Example Pedigree

the control of the control of

Computations

- **Compute diagonal elements** $(A)_{ii}$ of A to get F_i
- \blacktriangleright Prerequisite: Pedigree sorted such that parents before progeny
- Start with $(A)_{11}$

$$
(A)_{11}=(R)_{11}^2=(D)_{11}=1
$$

►
$$
(A)_{22} = (R)_{21}^2 + (R)_{22}^2 = 0 + 1 = 1
$$

\n► $(A)_{33} = (R)_{31}^2 + (R)_{32}^2 + (R)_{33}^2 = 0 + 0 + 1 = 1$

Animals With Known Parents

$$
(A)_{44} = (R)_{41}^{2} + (R)_{42}^{2} + (R)_{43}^{2} + (R)_{44}^{2}
$$

= $(\frac{1}{2}(R_{11} + R_{21}))^{2} + (\frac{1}{2}(R_{12} + R_{22}))^{2} + (\frac{1}{2}(R_{13} + R_{23}))^{2}$
+ $(1 - \frac{1}{4}(A_{11} + A_{22}))$
= $\frac{1}{4} + \frac{1}{4} + \frac{1}{2} = 1$

 \blacktriangleright (A)₅₅ \blacktriangleright (A)₆₆