Livestock Breeding and Genomics - Solution 12

Peter von Rohr 2018-12-13

Problem 1 Multivariate BLUP Animal Model

The table below contains data for pre-weaning gain (WWG) and post-weaning gain (PWG) for 5 beef calves.

Animal	Sex	Sire	Dam	WWG	PWG
4	Male	1	NA	4.5	6.8
5	Female	3	2	2.9	5.0
6	Female	1	2	3.9	6.8
7	Male	4	5	3.5	6.0
8	Male	3	6	5.0	7.5

The genetic variance-covariance matrix G_0 between the traits is

$$G_0 = \left[\begin{array}{cc} 20 & 18 \\ 18 & 40 \end{array} \right]$$

The residual variance-covariance matrix R_0 between the traits is

$$R_0 = \left[\begin{array}{cc} 40 & 11 \\ 11 & 30 \end{array} \right]$$

Your Task

Set up the mixed model equations for a multivariate BLUP analysis and compute the estimates for the fixed effects and the predictions for the breeding values.

Solution

The matrices X_1 and X_2 relate records of PWG and WWG to sex effects. For both traits, we have an effect for the male and female sex. Hence the vector β of fixed effects corresponds to

$$\beta = \begin{bmatrix} \beta_{M,WWG} \\ \beta_{F,WWG} \\ \beta_{M,PWG} \\ \beta_{F,PWG} \end{bmatrix}$$

The matrices X_1 and X_2 are the same and correspond to

$$X_1 = X_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$$

Combining them to the multivariate version leads to

$$X = \left[\begin{array}{cc} X_1 & 0 \\ 0 & X_2 \end{array} \right]$$

$$X = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

Using the matrix X together with matrix $R = I_n \otimes R_0$ to get

$$X^T R^{-1} X = \begin{bmatrix} 0.083 & 0.000 & -0.031 & 0.000 \\ 0.000 & 0.056 & 0.000 & -0.020 \\ -0.031 & 0.000 & 0.111 & 0.000 \\ 0.000 & -0.020 & 0.000 & 0.074 \end{bmatrix}$$

Similarly to the fixed effects, we can put together the vector of breeding values a.

$$a = \begin{bmatrix} a_{1,WWG} \\ a_{2,WWG} \\ a_{3,WWG} \\ a_{4,WWG} \\ a_{5,WWG} \\ a_{6,WWG} \\ a_{7,WWG} \\ a_{8,WWG} \\ a_{1,PWG} \\ a_{2,PWG} \\ a_{3,PWG} \\ a_{4,PWG} \\ a_{6,PWG} \\ a_{6,PWG} \\ a_{7,PWG} \\ a_{8,PWG} \end{bmatrix}$$

The design matrices Z_1 and Z_2 are equal and they link observations to breeding values.

$$Z_1 = Z_2 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Z = \left[\begin{array}{cc} Z_1 & 0 \\ 0 & Z_2 \end{array} \right]$$

Together with the numerator relationship matrix A we can get $G = G_0 \otimes A$ and from this $G^{-1} = G_0^{-1} \otimes A^{-1}$

$$A^{-1} = \begin{bmatrix} 1.833 & 0.500 & 0.000 & -0.667 & 0.000 & -1.000 & 0.000 & 0.000 \\ 0.500 & 2.000 & 0.500 & 0.000 & -1.000 & -1.000 & 0.000 & 0.000 \\ 0.000 & 0.500 & 2.000 & 0.000 & -1.000 & 0.500 & 0.000 & -1.000 \\ -0.667 & 0.000 & 0.000 & 1.833 & 0.500 & 0.000 & -1.000 & 0.000 \\ 0.000 & -1.000 & -1.000 & 0.500 & 2.500 & 0.000 & -1.000 & 0.000 \\ -1.000 & -1.000 & 0.500 & 0.000 & 2.500 & 0.000 & -1.000 \\ 0.000 & 0.000 & 0.000 & -1.000 & -1.000 & 0.000 & 2.000 & 0.000 \\ 0.000 & 0.000 & -1.000 & 0.000 & 0.000 & -1.000 & 0.000 & 2.000 \end{bmatrix}$$

$$G^{-1} = \begin{bmatrix} 0.15 & 0.04 & 0.00 & -0.06 & 0.00 & -0.08 & 0.00 & 0.00 & -0.07 & -0.02 & 0.00 & 0.03 & 0.00 & 0.04 & 0.00 & 0.00 \\ 0.04 & 0.17 & 0.04 & 0.00 & -0.08 & -0.08 & 0.00 & 0.00 & -0.02 & -0.08 & -0.02 & 0.00 & 0.04 & 0.00 & 0.00 \\ 0.00 & 0.04 & 0.17 & 0.00 & -0.08 & 0.04 & 0.00 & -0.08 & 0.00 & -0.02 & -0.08 & 0.00 & 0.04 & -0.02 & 0.00 & 0.04 \\ -0.06 & 0.00 & 0.00 & 0.15 & 0.04 & 0.00 & -0.08 & 0.00 & 0.03 & 0.00 & 0.00 & -0.07 & -0.02 & 0.00 & 0.04 \\ 0.00 & -0.08 & -0.08 & 0.04 & 0.21 & 0.00 & -0.08 & 0.00 & 0.03 & 0.00 & 0.00 & -0.07 & -0.02 & 0.00 & 0.04 & 0.00 \\ -0.08 & -0.08 & -0.08 & 0.04 & 0.21 & 0.00 & -0.08 & 0.00 & 0.04 & 0.04 & -0.02 & -0.09 & 0.00 & 0.04 & 0.00 \\ 0.00 & 0.00 & 0.00 & -0.08 & -0.08 & 0.00 & 0.17 & 0.00 & 0.00 & 0.04 & -0.02 & -0.09 & 0.00 & 0.04 & 0.00 \\ 0.00 & 0.00 & -0.08 & -0.08 & 0.00 & 0.01 & 7 & 0.00 & 0.00 & 0.04 & -0.02 & 0.00 & 0.00 & -0.08 & 0.00 \\ 0.00 & 0.00 & -0.08 & 0.00 & 0.00 & -0.08 & 0.00 & 0.17 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & -0.08 & 0.00 \\ 0.00 & -0.02 & 0.00 & 0.03 & 0.00 & 0.04 & 0.00 & 0.00 & 0.04 & 0.00 & 0.00 & 0.04 & 0.00 & -0.08 \\ -0.07 & -0.02 & 0.00 & 0.03 & 0.00 & 0.04 & 0.00 & 0.00 & 0.08 & 0.02 & 0.00 & -0.04 & -0.04 & 0.00 \\ 0.00 & -0.02 & -0.08 & -0.02 & 0.00 & 0.04 & 0.00 & 0.00 & 0.08 & 0.02 & 0.00 & -0.04 & -0.04 & 0.00 & 0.00 \\ 0.00 & -0.02 & -0.08 & 0.00 & 0.04 & -0.02 & 0.00 & 0.04 & 0.00 & 0.02 & 0.08 & 0.02 & 0.00 & -0.04 & 0.00 & 0.00 \\ 0.00 & 0.00 & 0.04 & 0.04 & -0.02 & 0.00 & 0.04 & 0.00 & 0.00 & 0.08 & 0.02 & 0.00 & -0.04 & 0.00 & -0.04 \\ 0.00 & 0.04 & 0.04 & -0.02 & 0.00 & 0.04 & 0.00 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.00 \\ 0.04 & 0.04 & -0.02 & 0.00 & 0.04 & 0.04 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.01 & 0.00 & 0.08 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.04 & 0.04 & 0.00 & -0.08 & 0.00 & 0.00 & -0.04 & -0.04 & 0.00 & 0.00 & 0.08 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.04 & 0.04 & 0.00 & -0.08 & 0.00 & 0.00 & 0.00 & -0.04 & -0.04 & 0.00 & -0.04 & 0.00 & 0.08 & 0.00 \\ 0.00 & 0.00 & 0.00 & 0.04 & 0.04 & 0.$$

Using the matrics X, Z, R^{-1} and G^{-1} , we can compute $Z^TR^{-1}X$ and $Z^TR^{-1}Z + G^{-1}$. These matrices define the right-hand side of the mixed model equations. But they are too be to be shown here.

The vector y of observations contains all observations of both traits

$$y = \begin{bmatrix} 4.50 \\ 2.90 \\ 3.90 \\ 3.50 \\ 5.00 \\ 6.80 \\ 5.00 \\ 6.80 \\ 6.00 \\ 7.50 \end{bmatrix}$$

The right-hand side is computed as

$$\begin{bmatrix} X^T R^{-1} y \\ Z^T R^{-1} y \end{bmatrix}$$

The solutions are

$\beta_{M,WWG}$		4.3609
$\widehat{\beta_{F,WWG}}$		3.3973
$\beta_{M,PWG}$ $\beta_{F,PWG}$ $a_{1,WWG}$ $a_{2,WWG}$ $a_{3,WWG}$ $a_{4,WWG}$ $a_{5,WWG}$ $a_{6,WWG}$		6.7999
		5.8803
		0.1509
		-0.0154
		-0.0784
		-0.0102
		-0.2703
		0.2758
		-0.3161
$a_{7,WWG}$		0.2438
$a_{8,WWG}$ $\widehat{a_{1,PWG}}$		0.2796
		-0.0076
$a_{2,PWG}$		-0.1703
$\begin{array}{c} a_{3,PWG} \\ a_{4,PWG} \\ a_{5,PWG} \\ a_{6,PWG} \end{array}$		-0.0127
		-0.4778
		0.5172
		-0.4790
$a_{7,PWG}$		0.3920
$a_{8,PWG}$		L 0.3020 J

Problem 2 Variance Components Estimation

The simplest forM of variance components estimation is based on the residuals of a fitted linear model and is shown in the summary results of the R-function lm(). Let us assume that we are given the dataset in the table shown below to which we fit a simple sire model.

Table 2: Example Dataset for Variance Components Estimation Based on Residuals Using a Sire Model

Sire	WWG
2	4.5
1	2.9
1	3.9
2	3.5
1	5.0
	2 1 1 2

The sire model is simplified to have a common mean μ . For a moment we are setting the sire effects to be fixed effects. This leads to the following model with $var(e) = I * \sigma_e^2$

$$y = X\mu + Z_s s + e$$

Using the above shown dataset we can use the R-function lm() to fit this simple linear model. Because, we want to have the sires as fixed effects, we have to convert them into factors before calling lm().

```
tbl_data_sol12p02$Sire <- as.factor(tbl_data_sol12p02$Sire)
lm_data_sol12p02 <- lm( WWG ~ 1 + Sire, data = tbl_data_sol12p02 )
summary(lm_data_sol12p02)</pre>
```

```
##
## Call:
## lm(formula = WWG ~ 1 + Sire, data = tbl_data_sol12p02)
##
##
  Residuals:
##
                   2
                            3
                                               5
##
    0.50000 -1.03333 -0.03333 -0.50000
##
##
   Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
##
   (Intercept)
                3.93333
                           0.54840
                                      7.172
                                            0.00558 **
                0.06667
                           0.86709
                                      0.077 0.94356
##
  Sire2
##
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
## Residual standard error: 0.9499 on 3 degrees of freedom
## Multiple R-squared: 0.001967,
                                     Adjusted R-squared:
## F-statistic: 0.005911 on 1 and 3 DF, p-value: 0.9436
```

From the output of summary() we are given the residual standard error to be 0.9499. This residual standard error is an estimate of σ_e . The question is where does it come from. The least-squares procedure does not yield this estimate for σ_e . The answer is that this estimate comes from the residuals r of the model. For our model the vector r of residuals is defined as

$$r = y - X\widehat{\mu} - Z_s\widehat{s}$$

where $\hat{\mu}$ and \hat{s} can be taken from the outut of the summary() function. They correspond to

$$\widehat{\mu} = 3.933333$$

$$\widehat{s} = \begin{bmatrix} 0.0000 \\ 0.0667 \end{bmatrix}$$

The estimate $\widehat{\sigma_e^2}$ for σ_e^2 is obtained by

$$\widehat{\sigma_e^2} = \frac{1}{n-p} \sum_{i=1}^n r_i^2$$

where n is the total number of observations and p is the number of parameters that are estimated by 1m which is 2 for our sire model. The term n-p is also called **degrees of freedom** (df). What is given as residual standard error by the output of summary() is the square root of $\widehat{\sigma_e^2}$.

Your Task

Verify for the above given dataset and the proposed sire model the residual standard error given by summary() by using the computation based on the residuals shown above.

Solution

```
The vector r of residuals can be obtained using the function residuals()
```

```
## 1 2 3 4 5
## 0.50000000 -1.03333333 -0.03333333 -0.50000000 1.06666667
```

The degrees of freedom for the residuals (n-p) are obtained by the function df.residual()

```
(n_df_e <- df.residual(lm_data_sol12p02))</pre>
```

(vec_res <- residuals(lm_data_sol12p02))</pre>

[1] 3

From this the residual standard error is computed as

```
(n_res_sd <- sqrt(sum(vec_res^2) / n_df_e))</pre>
```

[1] 0.9498538

The same result can be obtained using the function sigma()

```
sigma(lm_data_sol12p02)
```

[1] 0.9498538