
Chapter 8

Additional Aspects of
BLUP

This chapter introduces interesting additional aspects and special properties
of BLUP-based predicted breeding values. As we have seen in chapter 6, pre-
dicted breeding values which result from solving Henderson’s mixed model equa-
tions are predictions and these predictions always depend on some assumptions.
These assumptions are more or less valid depending on the dataset that is anal-
ysed to produce the results. Furthermore, predicted breeding values are a func-
tion of recorded data and such data is never perfect. Therefore, we need a
measure to quantify how good our predictions are. Such a measure is the ac-
curracy of the predicted breeding values.

One of the reasons, BLUP is nowadays the method of choice for predicting breed-
ing values is the fact that in the BLUP animal model all available information
is used. This property can be shown by decomposing the predicted breeding
values from an animal model.

8.1 Accurracy

The accuracy for a BLUP-based animal model is no longer as easily derived as
with the prediction of breeding values based on own-performance or progeny
records. The animal model is a linear mixed effects model containing fixed and
random effects. Due to the properties of BLUP-based methods, the estimates
of the fixed effects and the prediction of the random effects have minimum error
variance. For the fixed effects, this error variance can be computed as

var(β − β̂) = var(β̂)
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because fixed effects β do not have any variance. For the random effects u
the prediction error variance (PEV) does not simplify to the variance of the pre-
dicted effects û. Random effects by their nature do have a certain variance which
is part of the model specification. For a BLUP animal model the variance of the
random effects u correspond to var(u) = A ∗ σ2

u. Any meaningful prediction û
of a random effect u should also satisfy that the variance var(û) predicts var(u)
as closely as possible. Following this argument var(û) cannot correspond to the
prediction error variance. The prediction error variance PEV (û) is computed
as

PEV (û) = var(u − û) = var(u) + var(û) − 2 ∗ cov(u, û) = var(u) − var(û)

Henderson found that PEV (û) depends on the inverse of the coefficient matrix
in the mixed model equations.

[
XT R−1X XT R−1Z
ZT R−1X ZT R−1Z + G−1

]−1

=
[

C11 C12

C21 C22

]
We can state that

PEV (û) = var(u − û) = var(u) − var(û) = C22 (8.1)

For a single animal i, the prediction error variance is PEV (ûi) = C22
ii where C22

ii

is the i-th diagonal element in the matrix C22. The accuracy of ûi is measured
by the squared correlation r2

u,û between true and predicted breeding value. This
correlation is defined as

ru,û = cov(ui, ûi)√
var(ui) ∗ var(ûi)

= var(ûi)√
var(ui) ∗ var(ûi)

=

√
var(ûi)
var(ui)

(8.2)

Combining equations (8.2) and (8.1) by solving both for var(ûi) leads to

var(ûi) = var(ui) − C22
ii

var(ûi) = r2
u,û ∗ var(ui)

PEV (ûi) = C22
ii = var(ui) − r2

u,û ∗ var(ui) = (1 − r2
u,û) ∗ var(ui) (8.3)

Solving equation (8.3) for r2
u,û which is the measure commonly used to assign a

certain level of accuracy to the predicted breeding value ûi of a given animal i.

r2
u,û = 1 − C22

ii

var(ui)
= 1 − PEV (ûi)

var(ui)
(8.4)
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From equation (8.4) it becomes clear that the smaller PEV (ûi) is the higher the
accuracy r2

u,û is. In the limit where PEV (ûi) tends to 0, the accuracy will tend
to 1. Based on the definition of PEV (ûi) in (8.1), it can be seen that PEV (ûi)
tends to 0, if var(ûi) tends towards var(ui). That means the better the variance
var(ûi) of the predicted breeding values ûi approximates the variance var(ui),
the smaller the value for PEV (ûi) and the higher the accuracy r2

u,û of the
predicted breeding value ûi will be. On the other hand, if var(ûi) tends to 0
which means the prediction of var(ui) by var(ûi) is very poor, PEV (ûi) tends
to var(ui) and the accuracy r2

u,û tends to its minimum which is 0.

8.2 Confidence Intervals of Predicted Breeding
Values

The prediction error variance (PEV) determines the confidence interval of the
predicted breeding values. The square root of PEV corresponds to the standard
error of prediction (SEP).

SEP (ûi) =
√

PEV (ûi) =
√

(1 − r2
u,û) ∗ var(ui)

Assuming the predicted breeding values û follow a normal distribution and SEP
gives a measure of how much the predictions vary. For a given error probability
(α) the confidence interval can be derived for probability of 1 − α. For a given
genetic standard deviation σu of 12, an error probability of α = 0.05 and range
of accuracies, the width of the confidence intervals can be computed. The results
of these interval widths are shown in Table 8.1.
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Figure 8.1: Confidence Interval of Predicted Breeding Value

Table 8.1: Widths of Confidence Intervals for Given Accuracies

Accurracy Interval Width
0.40 36.44
0.50 33.26
0.60 29.75
0.70 25.76
0.80 21.04
0.90 14.88
0.95 10.52
0.99 4.70

For a given predicted breeding value of 100 and an accuracy of 0.99 the con-
fidence interval is 100 ± 2.35. The same confidence interval is also shown in
Figure 8.1.

8.3 Relevance of Accurracies

The relevance that is assigned to the accuracies of the predicted breeding val-
ues depends on the livestock species and also on the individual breeder. The
assessment of the importance of the accuracies is not always easy and is differ-
ent whether we are looking at a single animal or whether we are looking at a
population.
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Predicted breeding values are unbiased, hence low accuracies are not considered
to be something “bad”. For single animals with predicted breeding values with
low accuracies, their predicted breeding value is expected to change more. But
the change of the predicted breeding values can be in both directions. Because
most breeders want to avoid negative changes, high accuracies are taken to be
important.
Concerning the selection response, higher accuracies are better, but these higher
accuracies are not for free. The often mean that

• generation intervals increase, because we need to wait for more progeny
to deliver a performance record

• more progeny per selection candidate must be tested, hence the number
of selection candidates and the selection intensities decrease

• costs for testing animals increase.
For livestock species such as cattle and horses, breeders usually assign too much
relevance to accuracies. In general selection response could be increased by low-
ering the generation interval and increasing the selection intensities and thereby
accepting lower levels of accuracies.

8.4 Decomposition of Predicted Breeding Value

The mixed model equations as they are shown in (6.10) can be written in the
following abbreviated form

M ∗ s = r

where
M coefficient matrix
s vector of unknowns
r vector of right-hand sides

The vector s of unknowns in the mixed model equations consists of the vector β̂
of estimates of fixed effects and the vector û of predicted breeding values, which
means

s =
[

β̂
û

]
Because the vector β̂ has length p, the first p components in s correspond to
estimates of fixed effects. The remaining q components of s correspond to the
q predicted breeding values of vector û. Let us assume that we want to have a
closer look at how the predicted breeding value ûi of the animal at position i
in the vector û. The component ûi can be found on position p + i in the vector
s. As a consequence of that the (p + i)-th line in M contains the coefficients
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that are relevant for the computation of the predicted breeding value ûi. These
coefficients determine what type of information is used to compute ûi. In what
follows, we describe how these coefficients are determined.
For the decomposition, we are using a simpler model which is shown in (8.5)

yi = µ + ui + ei (8.5)

where yi Observation for animal i
ui breeding value of animal i with a variance of (1 + Fi)σ2

u

ei random residual effect with variance σ2
e

µ single fixed effect
The above defined model is used to analyse a dataset in which all animals have an
observation. Animal i has parents s and d and n progeny kj (with j = 1, . . . , n)
and n mates lj (with j = 1, . . . , n). From this it follows that progeny kj has
parents i and lj .
For this simple model (8.5) the mixed model equations also have a reduced
complexity. Because, we only have one fixed effect which is present in all obser-
vations the matrix X has just one column of all ones. Because all animals have
an observation, the matrix Z corresponds to the identity matrix.
Taking into account Henderson’s rule for setting up A−1 directly, the equation
for observation yi which corresponds to the (i + 1)-th1 equation in our mixed
effects model.

yi = µ̂ +

1 + αδ(i) + α

4

n∑
j=1

δ(kj)

 ûi − α

2
δ(i)ûs − α

2
δ(i)ûd

− α

2

n∑
j=1

δ(kj)ûkj + α

4

n∑
j=1

δ(kj)ûlj (8.6)

where α ration between variance components σ2
e/σ2

u

δ(j) contribution for animal j to A−1

Solving (8.6) for ûi leads to

ûi = 1
1 + αδ(i) + α

4
∑n

j=1 δ(kj)

yi − µ̂ + α

2

δ(i)(ûs + ûd) +
n∑

j=1
δ(kj)(ûkj − 1

2
ûlj )




(8.7)
1For the general case, this would be (p + i)-th equation. In the simple example, we have

p = 1.
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From the decomposition in (8.7), we can see that the predicted breeding value
ûi consists of the following components

• Predicted breeding values ûs and ûd of parents s and d of i
• Own performance yi of i
• Predicted breeding values ûkj and ûlj of progeny kj and mates lj

An explicit example of a decomposition in (8.7) will be used as an exercise
problem.
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