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9.3 Review On Selection Index Theory

Before the introduction of the BLUP animal model ((Henderson, 1973b) and
(Henderson, 1975)), breeding values were estimated using Selection Index
Theory ((Hazel, 1943) and (Hazel and Lush, 1942)). Both methods - selection
index and BLUP - are based on the same genetic model. The main difference
between the two methods consists in the way how they correct for identifiable
systematic environmental effects. We start with a treatment of selection index
theory.

9.3.1 Introduction

In principle, prediction of breeding values aims at assessing the genetic potential
of a selection candidate that is due to additive gene effects based on all avail-
able information, such that the correlation between true and predicted breeding
value is maximal. Because, we want to do this for a large number of selection
candidates, we can formulate our aim in a more general way. For a given popu-
lation, we want to predict breeding values for all animals in the population using
all available information, such that the correlation between true and predicted
breeding values are maximized. An alternative objective for the prediction to
the maximization of the correlation between true and predicted breeding values
is the minimization of the mean squared error of the prediction. The descrip-
tion of the aims of our procedure to predict breeding values shows that we are
dealing with two different concepts of breeding value.

1. True breeding value which corresponds to the sum of all additive gene-
effects

2. Predicted breeding value which is a function of the phenotypic obser-
vations (y) that is determined by statistical methods. As a prediction it
is always associated with a certain error which we want to be minimal.

The prediction of breeding values has three different objectives.

1. Selection candidates are ranked according to the predicted breeding values.
Hence, it provides a criterion for selecting parents out of a pool of selection
candidates

2. Predicted breeding values are used to assess the response to selection and
is important for planning a breeding program

3. Predicted breeding values are one criterion that affect the price of breeding
animals and the price of seamen.

The definition 4.1 of the term breeding value has several problems when it
comes to its potential usefulness for prediction.
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• It is impossible to generate an infinite number of progeny before having a
reliable prediction of the breeding value

• Due to the above mentioned objectives, we want to have a prediction of
the breeding value available as early as possible.

• The predicted breeding value should be as accurate as possible

To address these issues, the above mentioned methods were developed. We start
with the method of the selection index.

9.3.2 Selection Index Method

The selection index is a method to predict the breeding value of an animal (i)
by using all available information on the animal and on its relatives. The result
of the selection index method is an assignment of a numerical value (I) to each
animal. All animals in the population can then be ranked according to their
index value. The ranking according to the index value can be used as selection
criterion. In principle the index I is defined as linear combination of all available
information. This can be written as

I = ûi = b1y1 + b2y2 + · · · + bnyn = bT y (9.2)

where b is a vector of index weights and y is a vector of information sources.
Here we assume that all values in y are corrected for appropriate mean levels.
The resulting index value I in (9.2) is used as the predicted breeding value ûi.
From a statistical point of view equation (9.2) corresponds to a multiple linear
regression. The vector of index weights b are understood as partial regression
coefficients.

9.3.3 Aggregate Genotype

In most practical livestock breeding scenarios, we want to improve a population
at the genetic level with respect to more than one trait or characteristic, simul-
taneously. This requires a procedure that enables us to combine the breeding
values of several trait into one selection criterion. This criterion is called the
aggregate genotype H. It is defined as

H = w1u1 + w2u2 + · · · + wmum = wT u (9.3)

where u corresponds to the vector of true breeding values and w is a vector of
economic values. The economic value wk for a given trait k is defined as the
marginal change in profit caused by a small change in the population mean (µk)
of the trait k. At this point, we are not describing how the economic values
wk are derived, but we consider them to be known. For the construction of
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the selection index, we are using the general form of the aggregate genotype H.
Once the selection index is constructed, we can go back to the simple scenario
of considering just one trait which reduces the aggregate genotype H to the true
breeding value u of the single trait.

9.3.4 Theory of Index Construction

The term index construction stands for the computation of the vector of index
weights b for a given set of information sources and a given aggregate genotype.
Independently from the available information sources, the following parameters
must be known

• heritabilities and phenotypic standard deviations for the traits in the ag-
gregate genotype and for the traits in the index.

• phenotypic correlations between the traits in the index
• genetic correlations between the traits in the index and the traits in the

aggregate genotype
• genetic correlations between the traits in the aggregate genotype
• economic values for the traits in the aggregate genotype

The objective of the index construction is to maximize the correlation rHI be-
tween the index I and the aggregate genotype H. Because the index I corre-
sponds to a multiple linear regression, the mean squared error between aggregate
genotype and index is to be minimized. From this it follows that

E(H − I)2 → min (9.4)

The solution to the index construction objective in equation (9.4) leads to the
so-called index normal equations which have the following form.

Pb = Gw (9.5)

where P is the variance-covariance matrix between all information sources in
the index, G is the genetic variance-covariance matrix between the traits in the
aggregate genotype and in the index and w is a vector of known economic values.
Solving for the vector of unknown index weights b leads to

b = P −1Gw (9.6)

The accuracy of the index is assessed by the correlation rHI between the index
I and the aggregate genotype H. The higher this correlation, the better the
approximation of H by I. The correlation rHI can be computed as shown in
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(9.7). The terms for cov(H, I), σH and σI are taken from (9.24) and for b we
insert the solution taken from (9.6).

rHI = cov(H, I)
σHσI

= wT ∗ GT ∗ b√
(wT ∗ C ∗ w) ∗ (bT ∗ P ∗ b)

= wT ∗ GT ∗ P −1 ∗ G ∗ w√
(wT ∗ C ∗ w) ∗ ((P −1 ∗ G ∗ w)T ∗ P ∗ P −1 ∗ G ∗ w)

= wT ∗ GT ∗ P −1 ∗ G ∗ w√
(wT ∗ C ∗ w) ∗ (wT ∗ GT ∗ P −1 ∗ P ∗ P −1 ∗ G ∗ w)

= wT ∗ GT ∗ P −1 ∗ G ∗ w√
(wT ∗ C ∗ w) ∗ (wT ∗ GT ∗ P −1 ∗ G ∗ w)

=
√

wT ∗ GT ∗ P −1 ∗ G ∗ w

wT ∗ C ∗ w

= σI

σH
(9.7)

The response to selection R which results from applying a selection scheme
according to the index I per generation is computed as

R = i ∗ rHI ∗ σH

= i ∗ σI

σH
∗ σH

= i ∗ σI (9.8)

where i is the selection intensity.

9.3.5 Example of Index with Own Performance

The simplest case of an index I is the one where the aggregate genotype H
consists of one trait and the index I contains a single own performance record
of the same trait. This is equivalent to using the index I to predicting the
breeding value u of an animal based on own phenotypic own performance record
y. Hence we can set

H = u and I = by∗

During the index construction, we have assumed the information in the index
to be corrected for the appropriate population mean µ. For our example here,
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we can set y∗ = y − µ. To determine the unknown index weight b which is on
our example just a single number, we have to specify P , G and w. Because,
we are looking at just one trait, the vector of economic values w is set to one.
The matrix P was defined to be the variance-covariance matrix between the
traits in the index. As the index I contains just one phenotypic record, then P
corresponds to the phenotypic variance σ2

y of our trait of interest. The matrix G
was defined to be the genetic variance-covariance matrix between the traits in
the aggregate genotype and the traits in the index. In our example we have just
one trait which is the same in H and in I, hence G corresponds to the additive
genetic variance σ2

u. In summary, we have found that

P = σ2
y

G = σ2
u

w = 1 (9.9)

Inserting the terms of (9.9) into equation (9.6) to compute the index weight b
results in

b = P −1 ∗ G ∗ w

= σ−2
y ∗ σ2

u ∗ 1

= σ2
u

σ2
y

= h2 (9.10)

Using the index weight b found in (9.10) to compute the index I, we get

I = by∗

= h2(y − µ)
= ûi (9.11)

The index value I that we obtained in (9.11) corresponds to the predicted breed-
ing value for a given trait of an animal i based on an own performance phenotypic
record of animal i in the respective trait. Comparing the predicted breeding
value obtained in (9.11) using selection index theory to the result obtained from
the regression approach in (5.5) shows that they are identical.

The accuracy rHI of the predicted breeding value (ûi) using selection index
theory is computed as shown in (9.7)
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rHI = σI

σH

= bσy

σu

= h2σy

σu

= h (9.12)

Similarly to the predicted breeding value, the accuracy rHI that results from
selection index theory is identical to what was found using the regression ap-
proach.

9.3.6 Example with Progeny Records

The prediction of breeding values for a given animal i based on progeny records
is very common in livestock breeding. Examples are dairy cattle where bulls are
evaluated based on lactation records of daughters. Similarly for beef cattle or
pigs where sires are evaluated based on carcass performance of their progeny. For
a very long time this has been the standard method to predict breeding values to
select parents in a breeding program. First we assume that the progeny of animal
i are all half-sibs. Before, we can use the performance records of the progeny
to predict breeding values for the parents, we have to correct them with the
appropriate mean performance. After the correction the progeny performance
values are averaged for a given parent. These mean performance values for a
given parent i are called ȳi and are used to predict the breeding values. Hence
our index I for a given animal i is defined as

I = bȳi (9.13)

Because, we are only looking at a single trait, the aggregate genotype H corre-
sponds to the single true breeding value u of this trait and the economic weight
w is 1. Now we are ready to set up the index normal equations. In general these
equations have the form

Pb = Gw (9.14)

where P corresponds to the variance-covariance matrix of the information
sources in the index. Our index I as defined in (9.13) contains just one source
of information, namely the average ȳi of the progeny performance values of
animal i. In general the phenotypic variance of the mean ȳ of n progeny
performance values corresponds to
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σ2
ȳ = 1 + (n − 1)t

n
σ2

y (9.15)

For our case with the progeny records, t takes the value of 1
4 h2. For more details

on how to compute σ2
ȳ, see section 9.3.8. Hence the matrix P reduces to a single

number

P = σ2
ȳ = 1 + (n − 1)h2/4

n
σ2

y (9.16)

The matrix G in (9.14) is the genetic covariance matrix between the traits in H
and the information sources in I. In our current example G = cov(ui, ȳi) = 1

2 σ2
u.

For more details on how to compute G, see section 9.3.8.2. Now that we have
all the components of (9.14), we can insert them and solve for b.

1 + (n − 1)h2/4
n

σ2
y ∗ b = 1

2
σ2

a

b = 2nh2

4 + (n − 1)h2

= 2n

n + k
(9.17)

where k = 4−h2

h2 .

With this the predicted breeding value ûi for animal i based on the average
progeny performance values using the index approach corresponds to

ûi = I = b ∗ (ȳi − µ) = 2n

n + k
∗ (ȳi − µ) (9.18)

The accuracy for the predicted breeding value in (9.18) is

rHI =
√

n

n + k
(9.19)

9.3.7 Appendix: Derivation of Index Normal Equations

In this section we want to show how to derive the index normal equations
from the objective criterion in the index construction procedure. The objective
criterion was formulated in equation (9.4) as

Ψ = E(H − I)2 → min (9.20)
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The derivation starts by inserting the definitions of H and I into (9.20).

Ψ = E(H − I)2 = E(H2 − 2 ∗ H ∗ I + I2)
= E(H2) − 2 ∗ E(H ∗ I) + E(I2) (9.21)

Both the expected value E(H) of the aggregate genotype H and the expected
value E(I) of the index are both 0. This can be seen by the following expansion

E(H) = E(wT a) = wT ∗ E(u) = wT ∗ 0 = 0 (9.22)

because the breeding values u are defined as deviations, there expected value
E(u) is always 0. Similarly for the index I, we mentioned that the components
in the vector y denoting the information sources that enter the index I are
corrected by suitable population means. Due to this correction, we can state
that E(y) = 0 and thereby E(I) = 0. Using these results on the expected values
of H and I, we can further develop (9.21)

Ψ = var(H) − 2 ∗ cov(H, I) + var(I)
= var(wT u) − 2 ∗ cov(wT u, bT y) + var(bT y)
= wT var(u)w − 2 ∗ wT cov(u, yT )b + bT var(y)b
= wT Cw − 2 ∗ wT GT b + bT Pb (9.23)

where C is the variance-covariance matrix of the true breeding values of the
traits in the aggregated genotype, GT is the genetic variance-covariance matrix
between the traits in the aggregate genotype and the traits in the index and
P is the phenotypic variance-covariance matrix between the traits in the index.
Hence we can state

var(H) = wT ∗ C ∗ w

cov(H, I) = wT ∗ GT ∗ b

var(I) = bT ∗ P ∗ b (9.24)

In the objective criterion in (9.20), we stated that Ψ should be minimized. This
is done by computing the derivative of Ψ with respect to the vector b. The
solution vector b that sets that derivative to 0 corresponds to the solution that
we are looking for. The derivative of Ψ with respect to the vector b is also called
the gradient and can be computed as
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∂Ψ
∂b

= 0 − 2 ∗ wT ∗ GT + 2bT P (9.25)

Setting (9.25) to 0 leads to

0 = −2 ∗ wT ∗ GT + 2bT P

wT GT = bT P

Pb = Gw (9.26)

The last line in (9.26) follows by transposing both sides of the second last line
and because P is symmetric, P T = P . As a result we obtain the index normal
equations which can be solved for the unknown vector b by pre-multiplying both
sides with the inversion matrix P −1 of P .

b = P −1Gw (9.27)

Because P is a variance-covariance matrix, it is guaranteed to be positive definite
and its inverse P −1 does exist.

9.3.8 Appendix: Derivation of the Index Components for
the Example of the Mean Progeny Performance

9.3.8.1 Variance of Mean Progeny Performance

The mean performance values of a group of progeny for a given parent has the
following structure

ȳi = 1
n

n∑
k=1

yi,k (9.28)

where yk is the corrected performance value of progeny k of animal i. Each yk

can be decomposed into

yi,k = uk + ek

= 1
2

ui + 1
2

ud,k + mk + ek (9.29)

The variance (σ2
y) of a single phenotypic observation (yi,k) of progeny k of parent

i can be computed as
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σ2
y = var(yi,k) = var(1

2
ui + 1

2
ud,k + mk + ek)

= var(1
2

ui) + var(1
2

ud,k) + var(mk) + var(ek)

= 1
4

var(u) + 1
4

var(ud,k) + var(mk) + var(ek)

= 1
4

σ2
u + 1

4
var(ud,k) + var(mk) + var(ek) (9.30)

In (9.30) we have assumed that all the pairwise covariances between the terms
are 0. We define the intra-class correlation t which is the part of the total
variance which is attributed to the permanent effect in the single performance
records.

t = 1/4σ2
u

σ2
y

= 1
4

h2 (9.31)

Inserting the decomposition of (9.29) into (9.28) leads to

ȳi = 1
n

n∑
k=1

yi,k

= 1
n

n∑
k=1

(1
2

ui + 1
2

ud,k + mk + ek)

= 1
2

ui + 1
n

n∑
k=1

1
2

ud,k + 1
n

n∑
k=1

mk + 1
n

n∑
k=1

ek (9.32)

Taking the variance on both sides of (9.32) leads to our final result the variance
(σ2

ȳ) of the mean progeny performance.
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σ2
ȳ = var(ȳi) = var(1

2
ui + 1

n

n∑
k=1

1
2

ud,k + 1
n

n∑
k=1

mk + 1
n

n∑
k=1

ek)

= var(1
2

ui) + var( 1
n

n∑
k=1

1
2

ud,k) + var( 1
n

n∑
k=1

mk) + var( 1
n

n∑
k=1

ek)

= 1
4

σ2
u + 1

4n
var(ud,k) + 1

n
var(mk) + 1

n
var(ek)

= 1
4

σ2
u + 1

n

(
1
4

var(ud,k) + var(mk) + var(ek)
)

= t ∗ σ2
y + 1

n
(1 − t) ∗ σ2

y

= n ∗ t + 1 − t

n
∗ σ2

y

= 1 + (n − 1)t
n

∗ σ2
y (9.33)

Because, we saw earlier that t = h2/4, we can insert that into (9.33) which
brings us to the final result

σ2
ȳ = 1 + (n − 1)h2/4

n
∗ σ2

y (9.34)

9.3.8.2 Covariance between True Breeding Value and Mean Progeny
Performance

The set-up of the index normal equations requires the matrix G which corre-
sponds to the genetic covariance between the trait in the aggregate genotype and
the information sources in the index. For the example with the mean progeny
performance values, the matrix G is defined as

G = cov(ui, ȳi) = cov(ui,
1
n

n∑
k=1

yi,k)

= cov

(
ui,

1
2

ui + 1
n

n∑
k=1

[
1
2

ud,k + mk + ek

])

= cov(ui,
1
2

ui)

= 1
2

σ2
u (9.35)

In (9.35), we have used that the covariance between ui and all other components
of yi,k, except ui is 0.
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