
Chapter 9

Multiple Traits

So far we have seen how to predict breeding values using the BLUP animal
model. These breeding values were always only for one trait. From a statisti-
cal point of view, experts are calling such analyses univariate evaluations. In
reality, livestock breeders want to improve their animals in a population with
respect to several traits simultaneously. If there are genetic relationships (mea-
sured by genetic correlations) between traits, univariate predictions of breeding
values do not make optimal use of the available information. This effect is
stronger, if certain traits can only be observed in animals of one sex. Accord-
ing to (Mrode, 2005) who cites (Schaeffer, 1984) and (Thompson and Meyer,
1986), the increased accuracy of the evaluations is one of the main advantage of
multivariate BLUP analyses. Predictions of breeding values for several traits in
a single evaluation is called multivariate prediction of breeding values. Such
multivariate analyses can be implemented in different ways such as

• combining different corrected information sources in a multivariate selec-
tion index (no longer used).

• multivariate prediction of breeding values using BLUP animal model
(method of choice).

• combining predicted breeding values from univariate analyses.

Before the introduction of the BLUP animal model, breeding values were esti-
mated using a method that is called selection index method. A brief review
about selection index theory is given in section 9.3. While selection indices are
no longer used to estimate breeding values, selection index theory is still used
to predict the aggregate genotype, as will be shown later in this chapter. Before
that, we start with an introduction to multivariate BLUP methods.
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96 CHAPTER 9. MULTIPLE TRAITS

9.1 Multivariate Predictions Of Breeding Values
Using BLUP

The prediction of breeding values using a multivariate BLUP model is the opti-
mal prediction procedure. It has advantages, if

• some traits have lower heritability than others
• environmental correlations exist between traits measured on the same an-

imal
• some traits are available only a subset of all animals
• some traits were used for a first round of selection

In principle, a multivariate analysis can be thought of as several univariate
analyses which are stacked one on top of the other. Let us assume that we have
two traits. For the first trait, we define the model

y1 = X1β1 + Z1u1 + e1

Similarly for the second trait, we define the model

y2 = X2β2 + Z2u2 + e2

If we group the data by traits, then we can write the multivariate model as[
y1
y2

]
=
[

X1 0
0 X2

] [
β1
β2

]
+
[

Z1 0
0 Z2

] [
u1
u2

]
+
[

e1
e2

]
The genetic variance-covariance matrix G0 for the two traits has the following
structure.

G0 =
[

σ2
g1

σg1,g2
σg1,g2 σ2

g2

]
=
[

g11 g12
g21 g22

]
The inverse G−1

0 of G0 can be formulated as

G−1
0 =

[
g11 g12

g21 g22

]
For the random residual effects, the variance-covariance matrix R0 for the two
traits can be written as

R0 =
[

r11 r12
r21 r22

]
Also the inverse R−1

0 can be written as
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R−1
0 =

[
r11 r12

r21 r22

]
The variance-covariance matrix for the complete set of true breeding values and
for all random residuals can be written as

var(u) = var

[
u1
u2

]
=
[

g11A g12A
g21A g22A

]
= G0 ⊗ A = G

where A is the numerator relationship matrix and ⊗ denotes the so-called Kro-
neckerproduct of two matrices. The variance-covariance matrix R for the
random residuals is given by

R = var(e) = var

[
e1
e2

]
=
[

r11In r12In

r21In r22In

]
= R0 ⊗ In

where n corresponds to the number of animals in the pedigree. The covariances
between all elements of a and e are 0. This is denoted by combining both
random vectors into a single vector and writing down the variance-covariance
matrix of the combined vector as

var

[
u
e

]
=
[

G 0
0 R

]
= var


u1
u2
e1
e2

 =


g11A g12A 0 0
g21A g22A 0 0
0 0 r11In r12In

0 0 r21In r22In


The solutions to get estimates of fixed effects and to get predictions for breeding
values are obtained from the solutions of mixed model equations. These have
exactly the same structure as in the univariate case.

[
XT R−1X XT R−1Z
ZT R−1X ZT R−1Z + G−1

] [
β̂
û

]
=
[

XT R−1y
ZT R−1y

]
where

y =
[

y1
y2

]
, X =

[
X1 0
0 X2

]
, β̂ =

[
β̂1
β̂2

]
, Z =

[
Z1 0
0 Z2

]
, û =

[
û1
û2

]

Based on the specification of the variance-covariance matrices described earlier,
we get R−1 = R−1

0 ⊗ In and G−1 = G−1
0 ⊗ A−1.
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9.2 Multitrait Selection

Now that we have predicted breeding values for a collection of traits available,
the question is how to integrate these predicted breeding values into a consistent
selection criterion. Selection index theory provides a tool to optimally combine
different sources of information in order to approximate the aggregate genotype
H. In section 9.2.3, we will return to this topic once again. Although the selec-
tion index provides an ideal framework to combine estimated breeding values
into an optimal selection criterion, we are going to describe to other selection
procedures that are commonly used in practical livestock breeding. The two
procedures are

1. Tandem-Selection and
2. Selection based on independent selection thresholds.

The description of these procedures aims at showing the negative consequences
that results from the use of these sub-optimal selection strategies.

9.2.1 Tandem-Selection

The term Tandem-Selection stands for the strategy of always improving the
population with respect to just one trait. Once the breeding goal for this trait
is reached the population is improved with respect to a different trait. This
sequence of single-trait improvements is continued until the breeding goal for
all traits is reached.

The problem with Tandem-Selection is that while improving the population for
a given trait, the population can only realize correlated selection responses for
all other traits. These correlated selection responses might be very small or can
even be negative which causes the time that it takes to reach the breeding goal
for all relevant traits to be very long.

9.2.2 Selection Based On Independent Selection Thresh-
olds

This method was used before the selection index was discovered. This selection
procedure is very easy to apply. First selection thresholds are defined for all
traits. In the next steps, all animals which are above the thresholds for all
traits are selected as parents of the next generation. With this method, selec-
tion responses for all traits can be obtained in the early generations after the
implementation of this selection strategy.

We are using the following example to show how selection based on independent
selection thresholds is used. For reasons of simplicity, we restrict ourselves on
two traits. But the results can be generalized without any problems.
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Figure 9.1: Milk Yield and Protein Content For Dairy Cows

9.2.2.1 Example: Selection On Independent Thresholds

In a dairy cattle population, breeders want to improve milk yield and protein
content. We assume the following selection thresholds for the two traits of
interest during first lactation

• milk yield: 6900 kg
• protein content: 3.5 %

Figure 9.1 shows the performance data for a herd of dairy cows. The selection
thresholds (red line for milk yield and blue line for protein content) divide the
diagram into four quadrants. None of the cows in the lower right quadrant does
meet any of the selection criterion imposed by the thresholds. The cows in the
upper left quadrant fulfill the requirements for protein content and the cows in
the lower right quadrant fulfill the requirements for milk yield. Only the cows
in the upper right quadrant fulfill the requirements for both traits.

The disadvantage of this selection strategy becomes apparent with the cows in
the upper left and in the lower right quadrant. They are culled and thereby
not considered as parents of the next generation even though, they have good
performances in one of the traits. From a statistical genetics point of view
there are three problems associated with a selection strategy that is based on
independent selection thresholds
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1. livestock breeders tend to put the thresholds for all traits in the range
of positive predicted breeding values. This leads to an exclusion of very
many animals and a dramatic reduction in genetic variability

2. genetic relationships between traits are completely ignored. These relation-
ships must be considered when defining selection thresholds. Otherwise
the expected genetic gain will not be as expected.

3. differences in the economic relevance of the different traits are completely
ignored. Putting the threshold in all traits into the range of positive pre-
dicted breeding values leads to a high emphasis on traits with a high her-
itability. Traits with lower heritability will have only very small selection
responses.

9.2.3 Selection Index

In section 9.2, we have already briefly described how we can use selection index
theory to approximate the aggregate genotype H in an optimal way. Just as a
reminder, the aggregate genotype H combines all economically relevant traits
into a single value using a linear function of the true breeding values u and
taking the economic values w as weighting factors. Given that H corresponds
to the linear function

H = wT u

and we want to approximate H by an Index I which is a linear function of all
predicted breeding values û, we can write

I = bT û

where b is a vector of unknown index weights. The vector b is determined using
the optimality condition of minimum prediction error variance which results in

b = P −1Gw (9.1)

where P is the variance-covariance matrix between all information sources and
G is the covariance matrix between the information sources and the traits in
the aggregate genotype. In case where the traits in the aggregate genotype H
and in the index I are the same, the matrices P and G are defined as

P = var(û)

and

G = cov(u, û)



9.2. MULTITRAIT SELECTION 101

For predicted breeding values using BLUP, it can be shown that cov(u, û) =
var(û) and therefore P = G. Using that equality in equation (9.1), we get

b = w

which means that the vector b of index weights corresponds to the vector of
economic values w.

The use of the selection index theory to combine predicted breeding values as
information sources to approximate the aggregate genotype has the following
advantages

• genetic relationships (correlations) between traits in the aggregate geno-
type are considered correctly

• relationships between information sources in the index are considered cor-
rectly

• information from auxiliary traits can be used
• differences in economic relevance of different traits are considered correctly
• expected selection responses can be estimated and thereby quantified

Despite all these advantages, index selection alone is very rarely used in practical
livestock breeding. The reason for this is that every population has a few traits
that are difficult to associate with an economic value or for some traits it is
difficult to come up with genetic parameters. As a consequence of that, in
practical livestock breeding we will always find a mix of index selection and a
variety of independent selection thresholds.
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