
Chapter 12

Variance Components

The prediction of breeding values using a BLUP animal model required the vari-
ance components σ2

e for the residual variance and σ2
u for the genetic additive

variance to be known. For the sire model, σ2
u is replaced by the sire variance

component σ2
s . In real world livestock breeding evaluations, these variance com-

ponents are not known and hence must be estimated from the data. The data
analysis procedure that estimates the variance components from data is called
variance components estimation.

12.1 Sire Model

The sire model is used to motivate the introduction of the topic of variance
components estimation. The sire model is given by

y = Xβ + Zss + e (12.1)

with var(e) = R, var(s) = Asσ2
s and var(y) = ZsAsZT

s σ2
s +R. The matrix As is

the numerator relationship for sires, the sire variance component σ2
s corresponds

to 0.25 ∗ σ2
u and R can often be simplified to R = I ∗ σ2

e . The interest in this
chapter is how to estimate σ2

s and σ2
e .

In the simple case the vector β is reduced to just one scalar fixed effects param-
eter. This reduced X to a matrix with one column with all elements equal to
1. Assuming that we have q unrelated sires the relationship matrix As for the
sires corresponds to the identity matrix I.
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12.2 Analysis Of Variance (Anova)

As a first approach we can use an analysis of variance by fitting

1. a model with an overall effect β = µ and
2. a model with sire effects.

These two models give an analysis of variance of the following structure

Source Degrees of Freedom (df) Sums of Squares (SSQ)

Overall (µ) Rank(X) = 1 yT X(XT X)−1XT y = F
Sires (s) Rank(Zs) − Rank(X) = q − 1 yT Zs(ZT

s Zs)−1ZT
s y − yT X(XT X)−1XT y = S

Residual (e) n − Rank(Zs) = n − q yT y − yT Zs(ZT
s Zs)−1ZT

s y = T

Total n yT y

The sums of squares (SSQ) can also be expanded into sums of scalar quantities
which might be easier to understand. For our sire model we get

F = yT X(XT X)−1XT y = 1
n

[
n∑

i=1
yi

]2

where n corresponds to the number of observations in the dataset.

S = yT Zs(ZT
s Zs)−1ZT

s y − yT X(XT X)−1XT y =
q∑

i=1

1
ni

 ni∑
j=1

yij

2

− F

where ni corresponds to the number of observations for sire i.

T = yT y − yT Zs(ZT
s Zs)−1ZT

s y =
n∑

i=1
y2

i − S − F

In principle effects β and s are treated as fixed effects in the above anova.
If estimates of σ2

e and σ2
s are required the observed sums of squares S and

T can be equated to their expected values E(T ) = (n − q)σ2
e and E(S) =

(q − 1)σ2
e + tr(ZsMZs)σ2

s where M = I − X(XT X)−1XT and tr(M) stands for
the trace of matrix M which corresponds to the sum of the diagonal elements
of matrix M .
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12.3 Numerical Example

We want to show the estimation of variance components with a very small data
set. The data that will be used is shown in the table below. The observations
consist of pre-weaning weight gains of beef cattle.

Table 12.1: Small Example Dataset for Variance Components Es-
timation Using a Sire Model

Animal Sire WWG
4 2 2.9
5 1 4.0
6 3 3.5
7 2 3.5

The model used is a simplified sire model where all the fixed effect are captured
by a common mean µ. Then there is the sire effect s as a random effect and the
random residual effect. Hence for any given observation yij for animal i of sire
j, we can write

yij = µ + sj + ei

with µ the common mean, sj the random effect of sire j (j = 1, 2, 3) and ei

corresponds to the random residual of observation i (i = 1, . . . , 4). In matrix
notation thi s model was already given in (12.1). The design matrix X is a
matrix with one column and with elements all equal to 1. The design matrix
Zs links observations to sire effects.

X =


1
1
1
1

 , Zs =


0 1 0
1 0 0
0 0 1
0 1 0


An analysis of variance can be constructed as

Source Degrees of Freedom (df) Sums of Squares (SSQ)

Overall (µ) Rank(X) = 1 F = 48.3025
Sires (s) Rank(Zs) − Rank(X) = q − 1 S = 0.4275
Residual (e) n − Rank(Zs) = n − q T = 0.18

With
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M =


0.75 −0.25 −0.25 −0.25

−0.25 0.75 −0.25 −0.25
−0.25 −0.25 0.75 −0.25
−0.25 −0.25 −0.25 0.75

 and ZT
s MZ =

 0.75 −0.50 −0.25
−0.50 1.00 −0.50
−0.25 −0.50 0.75


we get the following estimates

σ̂2
e = T = 0.18

σ̂2
s = S − (q − 1)σ̂2

e

tr(ZT
s MZs)

= 0.4275 − 2 ∗ 0.18
2.5

= 0.027

The same computations based on an anova can be done in R very easily. Assume
that our dataset is in a dataframe which is called tbl_num_ex_chp12_aov. We
are doing the anova using the function aov() to get the sums of squares.
aov_num_ex_chp12 <- aov(formula = WWG ~ Sire, data = tbl_num_ex_chp12_aov)
summary(aov_num_ex_chp12)

## Df Sum Sq Mean Sq F value Pr(>F)
## Sire 2 0.4275 0.2137 1.187 0.544
## Residuals 1 0.1800 0.1800

The results from above are obtained for σ̂2
e = 0.18 as the value under the column

Mean Sq in the row Residuals. Because in our computations above, we have
considered the estimation of the overall effect which is not done in the function
aov() in R.

12.4 Negative Estimates with Anova

One of the problems that frequently occurs when using anova to estimate vari-
ance components is that some estimates might be negative. Negative estimates
are outside of the permissible range for the parameter and hence are not valid
estimates. As a consequence of that alternative methods have been proposed to
estimate variance components.

12.5 Likelihood-Based Approaches

The maximum likelihood (ML) approach was developed and popularized by R.
A. Fisher. ML is a general approach for parameter estimation and is not only
used for estimating variance components. Let us assume that our observed
traits are continuous and real-valued quantities. In ML we assume that these
quantities follow a certain density. This density is a function of the observed
values and of unknown parameters that we want to estimate.
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12.5.1 Density of Observations

Given a vector y of observations. As already mentioned, the vector y follows a
certain density. As an example such a density might be a multivariate normal
distribution. For a given vector y of length n, the underlying n-dimensional
multivariate normal distribution has the following form

fY (y) = 1√
(2π)ndet(Σ)

exp

{
−1

2
(y − µ)T Σ−1(y − µ)

}
with µ expected value of y

Σ variance-covariance matrix of y
det() determinant

12.5.2 Likelihood Function

As already mentioned the density is a function of the observed data y and
of some unknown parameters. For the multivariate normal distribution these
parameters are µ and Σ. Before observing any data, we can interpret the density
f(y|µ, Σ) as a function of y for some fixed values of µ and Σ. But once the data
has been observed, y is fixed and the parameters µ and Σ are unknown and
must be estimated from the data. For the task of parameter estimation, it
makes more sense to view f(y|µ, Σ) as a function of µ and Σ. We can write this
function a little different

L(µ, Σ) = f(y|µ, Σ)

The function L(µ, Σ) is called the Likelihood function.

12.5.3 Maximum Likelihood

For a given dataset we choose an appropriate density which is suitable for our
observations. As already mentioned, due to the Central Limit Theorem, the
normal distribution is often used as a density for observations. Once, we have
chosen the density, it contains unknown parameters which we have to estimate
from the data. Loosely speaking, our goal is to determine the parameters such
that the observed data is modeled as good as possible. This requirement is
translated into a mathematical framework by the maximization of the likelihood.
Hence for a given dataset our parameter estimates are determined such that the
likelihood is maximized. For our multi-variate normal distribution, this can be
transformed into the following equations

µ̂ = argmaxµL(µ, Σ)
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and

Σ̂ = argmaxΣL(µ, Σ)

12.6 Summary

The topic of variance component estimation is a huge area. We have just covered
two possible approaches to get estimates of variance components. There are
many more of them. The coverage of these methods is outside of the scope of
this course.


	Preface
	Prerequisites
	Goals
	Exam
	Lecture Notes

	Introduction To Linear Algebra
	Glimpse Ahead
	Vectors
	Matrices
	Systems Of Equations
	Solving Systems of Linear Equations

	Introduction To R and RStudio
	Introduction to Livestock Breeding and Genomics
	Terminology
	History
	Fundamental Questions
	Improvement of Animal Populations
	Statistics
	Computer Science

	Basics in Quantitative Genetics
	Single Locus - Quantitative Trait
	Frequencies
	Hardy-Weinberg Equilibrium
	Value and Mean
	Variances
	Extension To More Loci
	Genetic Models
	Appendix: Derivations

	Genetic Evaluations
	Introduction
	Basic Principle of Predicting Breeding Values
	Animal's Own Performance
	Progeny Records

	Best Linear Unbiased Prediction (BLUP)
	Problem of Correction
	Numeric Example
	Linear Mixed Effects Model
	Sire Model
	Animal Model

	Genetic Covariances Between Animals
	Similarity Between Individuals
	Numerator Relationship Matrix
	The Inverse Numerator Relationship Matrix
	Structure of A^{-1}
	Henderson's Rule To Set Up A^{-1}
	Derivation of Henderson's Rules
	Computing Inbreeding Coefficients

	Additional Aspects of BLUP
	Accurracy
	Confidence Intervals of Predicted Breeding Values
	Relevance of Accurracies
	Decomposition of Predicted Breeding Value

	Multiple Traits
	Multivariate Predictions Of Breeding Values Using BLUP
	Multitrait Selection
	Review On Selection Index Theory

	Variance and Inbreeding
	Inbreeding
	Changes of Mean Value
	Changes of Variance

	Genomic Selection
	Background
	A Linear Model To Predict Genomic Breeding Values
	GBLUP
	Practical Problems

	Variance Components
	Sire Model
	Analysis Of Variance (Anova)
	Numerical Example
	Negative Estimates with Anova
	Likelihood-Based Approaches
	Summary


