Livestock Breeding and Genomics - Exercise 12

Peter von Rohr

2019-12-13

Problem 1 Marker Effect Model

We are given the dataset that is shown in the table below. This dataset contains gentyping results of 10 for 2 SNP loci.

Animal	SNP A	SNP B	Observation
1	0	0	156
2	1	0	168
3	0	1	161
4	1	0	164
5	-1	0	128
6	-1	1	124
7	0	-1	143
8	1	1	178
9	1	0	163
10	0	0	151

Your Task

- The goal of this problem is to estimate SNP marker effects using a marker effect model. Because we have just 2 SNP loci, you can use a fixed effects linear model with the 2 loci as fixed effects. Furthermore you can also include a fixed intercept into the model.
- Specify all the model components including the vector of observations, the design matrix X, the vector of unknowns and the vector of residuals.
- You can use the R-function lm() to get the solutions for estimates of the unknown SNP effects.

Your Solution

Problem 2 Breeding Value Model

Use the same data as in Problem 1 to estimate genomic breeding values using a breeding value model.

Hints

- The only fixed effect in this model is the mean μ which is the same for all observations.
- You can use the following matrix as the genomic relationship matrix

	0.141	-0.124	-0.123	-0.124	0.288	0.083	0.287	-0.329	-0.124	0.082
G =	-0.124	0.760	-0.330	0.701	-0.949	-1.155	0.082	0.495	0.701	-0.124
	-0.123	-0.330	0.757	-0.330	0.085	0.905	-0.943	0.491	-0.330	-0.123
	-0.124	0.701	-0.330	0.760	-0.949	-1.155	0.082	0.495	0.701	-0.124
	0.288	-0.949	0.085	-0.949	1.584	1.322	0.492	-1.152	-0.949	0.288
	0.083	-1.155	0.905	-1.155	1.322	2.202	-0.738	-0.333	-1.155	0.083
	0.287	0.082	-0.943	0.082	0.492	-0.738	1.576	-1.148	0.082	0.287
	-0.329	0.495	0.491	0.495	-1.152	-0.333	-1.148	1.374	0.495	-0.329
	-0.124	0.701	-0.330	0.701	-0.949	-1.155	0.082	0.495	0.760	-0.124
	0.082	-0.124	-0.123	-0.124	0.288	0.083	0.287	-0.329	-0.124	0.141

Your Tasks

• Specify all model components of the linear mixed model, including the expected values and the variance-covariance matrix of the random effects.

Your Solution