Basics of Quantitative Genetics (Part 2)

Peter von Rohr

04 Oktober 2019

Variances

- \triangleright selection can only be done with variation
- \blacktriangleright variation is assessed by variance

$$
Var[X] = \sum_{x_i \in \mathcal{X}} (x_i - \mu_X)^2 * f(x_i)
$$

where \mathcal{X} : set of all possible x-values $f(x_i)$ probability that x assumes the value of x_i μ_X expected value $E[X]$ of X

Variation of Genotypic Values

$$
\sigma_G^2 = Var[V] = (V_{11} - \mu)^2 * f(G_1G_1)
$$

+
$$
(V_{12} - \mu)^2 * f(G_1G_2)
$$

+
$$
(V_{22} - \mu)^2 * f(G_2G_2)
$$

=
$$
(BV_{11} + D_{11})^2 * f(G_1G_1)
$$

+
$$
(BV_{12} + D_{12})^2 * f(G_1G_2)
$$

+
$$
(BV_{22} + D_{22})^2 * f(G_2G_2)
$$

=
$$
2pq\alpha^2 + (2pqd)^2
$$

=
$$
\sigma_A^2 + \sigma_D^2
$$

where $\mu = (p - q)a + 2pqd$ the population mean and $V_{ii} - \mu = BV_{ii} + D_{ii}$

Additive Genetic Variance

$$
\sigma_A^2 = \text{Var}[BV] = BV_{11}^2 * f(G_1G_1) + BV_{12}^2 * f(G_1G_2) + BV_{22}^2 * f(G_2G_2)
$$
\n
$$
= (2q\alpha)^2 * p^2 + ((q - p)\alpha)^2 * 2pq + (-2p\alpha)^2 * q^2
$$
\n
$$
= 4p^2q^2\alpha^2 + (q^2\alpha^2 - 2pq\alpha^2 + p^2\alpha^2) * 2pq + 4p^2q^2\alpha^2
$$
\n
$$
= 8p^2q^2\alpha^2 + 2pq^3\alpha^2 - 4p^2q^2\alpha^2 + 2p^3q\alpha^2
$$
\n
$$
= 4p^2q^2\alpha^2 + 2pq^3\alpha^2 + 2p^3q\alpha^2
$$
\n
$$
= 2pq\alpha^2(2pq + q^2 + p^2)
$$
\n
$$
= 2pq\alpha^2
$$

because $E[BV] = 0$

Dominance Variance

$$
\sigma_D^2 = D_{11}^2 * f(G_1G_1) + D_{12}^2 * f(G_1G_2) + D_{22}^2 * f(G_2G_2)
$$

= $(-2q^2d)^2 * p^2 + (2pqd)^2 * 2pq + (-2p^2d)^2 * q^2$
= $4p^2q^4d^2 + 8p^3q^3d^2 + 4p^4q^2d^2$
= $4p^2q^2d^2(q^2 + 2pq + p^2)$
= $4p^2q^2d^2$

because $E[D] = 0$

Extension To More Loci

Epistatic Interaction

 \triangleright Decomposition of overall genotypic value V

$$
V = V_A + V_B + I_{AB}
$$

where I_{AB} : deviation from additively combining A and B

 \triangleright Decomposition of V_A and V_B as before and re-grouping additive and dominance terms

$$
V = \mu + U + D + I_{AB}
$$

where U : breeding values and D : Dominance deviations

I Interaction deviation lead to new variance component σ_l^2

$$
\sigma_G^2 = \text{var}(V) = \text{var}(\mu + U + D + I_{AB})
$$

= $\text{var}(U) + \text{var}(D) + \text{var}(I_{AB})$
= $\sigma_U^2 + \sigma_D^2 + \sigma_I^2$

Summary of Effects

Importance for Livestock Breeding

- \triangleright Breeding values measure effects of alleles
- \triangleright Dominance deviations measure effects of genotypes
- \blacktriangleright Interaction deviations measure effects of different loci
- \rightarrow for livestock breeding
	- \triangleright parents pass random sample of allels to offspring

→ **breeding value** and associated **genetic additive variance** are important

 \rightarrow dominance and interaction deviations and associated variance components rarely considered

Genetic Models

P polygenic model

- \blacktriangleright large but finite number of loci affect phenotype
- \blacktriangleright used in genomic selection

Example 1 infinitesimal model

- \triangleright infinite number of loci affect phenotype
- \triangleright breeding value is the sum of infinitely small single locus breeding values
- \triangleright breeding value converges to normal distribution (Central Limit Theorem)
- \triangleright used in traditional breeding value estimation

Central Limit Theorem

Figure 1: Distribution of Sums of Different Numbers of Components