Genetic Covariances Between Animals

Peter von Rohr

25 Oktober 2019

BLUP Animal Model

- Traditional prediction of breeding values
 - i.e. no genomic information available
 - de-facto standard method
- Model recap

$$y = X\beta + Zu + e$$

where

- y vector of length *n* of phenotypic information
- β vector of length *p* of unknown fixed effects
- $X \quad n \times p$ incidence matrix
- *u* vector of length *q* of unknown random breeding values
- $Z \quad n \times q$ incidence matrix
- e vector of length n of unknown random residuals

Example

Calf	Sire	Dam	Herd	WWG
3	1	2	1	4.5
4	1	NA	2	2.9
5	4	3	2	3.9
6	5	2	1	3.5

Animal Model Setup

- Convert information from data into model
- Put observations in vector y

$$y = \begin{bmatrix} 4.5 \\ 2.9 \\ 3.9 \\ 3.5 \end{bmatrix}$$

Fixed effects such as herd go in vector β and X links observations to components in β

$$X = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 1\\ 1 & 0 \end{bmatrix}, \ \beta = \begin{bmatrix} \beta_1\\ \beta_2 \end{bmatrix}$$

Breeding Values As Random Effects and Residuals

$$Z = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \ u = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \end{bmatrix}, \ e = \begin{bmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{bmatrix}$$

Putting Everything Together

$$\begin{bmatrix} 4.5\\ 2.9\\ 3.9\\ 3.5 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 0 & 1\\ 1 & 0 \end{bmatrix} \begin{bmatrix} \beta_1\\ \beta_2 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u_1\\ u_2\\ u_3\\ u_4\\ u_5\\ u_6 \end{bmatrix} + \begin{bmatrix} e_1\\ e_2\\ e_3\\ e_4 \end{bmatrix}$$

Solution with Mixed Model Equations

General form

$$\begin{bmatrix} X^{\mathsf{T}}R^{-1}X & X^{\mathsf{T}}R^{-1}Z \\ Z^{\mathsf{T}}R^{-1}X & Z^{\mathsf{T}}R^{-1}Z + G^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^{\mathsf{T}}R^{-1}y \\ Z^{\mathsf{T}}R^{-1}y \end{bmatrix}$$

• Assume $R = I * \sigma_e^2$ and we set $G = A * \sigma_u^2$

$$\begin{bmatrix} X^{T}X & X^{T}Z \\ Z^{T}X & Z^{T}Z + \lambda * A^{-1} \end{bmatrix} \begin{bmatrix} \hat{\beta} \\ \hat{u} \end{bmatrix} = \begin{bmatrix} X^{T}y \\ Z^{T}y \end{bmatrix}$$

with $\lambda=\sigma_{e}^{2}/\sigma_{u}^{2}$

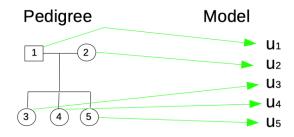
Components of Mixed Model Equations

Numerator Relationship Matrix

- Only component missing in mixed model equations: matrix A
- A is called the numerator relationship matrix
- Properties of A

$$\mathsf{var}(\mathsf{a}) = \mathsf{G} = \mathsf{A} * \sigma_{\mathsf{u}}^2$$

Meaning of A



Variance-Covariance

	U 1	U2	Uз	U4	U5
U 1	var(u1)	cov(u 1, u 2)	cov(u1,u3)	cov(u1,u4)	cov(u1,u5)
U2		var(u2)	cov(u2,u3)	cov(u2,u4)	COV(U 2, U 5)
Uз			var(u3)	cov(u3,u4)	cov(u3,u5)
U4				var(u4)	cov(u4,u5)
U 5					var(u₅)

Elements of A

- Diagonal elements (A)_{ii} = 1 + F_i where F_i: inbreeding coefficient of i
- Offdiagonal elements $(A)_{ij} = cov(u_i, u_j)/\sigma_u^2$
- Symmetric
- Definition leads to recursive algorithm for computing components of A