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4.1.3 Random Effects Models

Before, we introduce the mixed linear effects model, we first have a look at how
the repeated measurements data can be modelled with a random effects model.
For the demonstration of the random effects model, we use the dataset in Table
4.3, but we are ignoring the factor Breed for a moment. Then this dataset
just looks like a repeated measurement of the body weight of some beef cattle
animals (see Table 4.4).

Table 4.4: Repeated Measurements of Body Weight for Beef Cattle
Animals

Animal Body Weight
2 463.0000
2 468.8940
2 467.8753
5 496.0000
5 495.0033
5 493.6563
7 518.0000
7 509.3221
7 506.5958
10 541.0000
10 547.3609
10 533.9288

In a random effects model with repeated observations, the expected value 𝐸(𝑦𝑖𝑗)
for body weight 𝑦𝑖𝑗 of animal 𝑖 with the 𝑗𝑡ℎ observation can be written as𝐸(𝑦𝑖𝑗) = 𝜇 + 𝛼𝑖 (4.2)

Algebraically the expression for 𝐸(𝑦𝑖𝑗) given in (4.2) is not different from what
we have seen for the fixed linear effects model in chapter 3. But the assumptions
are different. In (4.2), 𝛼𝑖 is the effect of animal 𝑖 on the observed body weight.
Because the animals in the dataset (Table 4.4) is a random sample of a large
population of animals, the effect 𝛼𝑖 is a so-called random effect. A random
effect in a model is to be treated as a random variable for which, we have to
specify its distributional properties such as expected value and variance. For
our example of the repeated measurements data, we assume the following three
properties for the 𝛼𝑖 effects

1. they are indepentently and identically distributed (i.i.d.)
2. they all have expected value of 0, 𝐸(𝛼𝑖) = 0 ∀𝑖
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3. they all have the same variance 𝜎2𝛼, 𝑣𝑎𝑟(𝛼𝑖) = 𝐸 [𝛼𝑖 − 𝐸(𝛼𝑖)]2 = 𝐸(𝛼2𝑖 ) =𝜎2𝛼 with 𝑐𝑜𝑣(𝛼𝑖, 𝛼𝑘) = 0 ∀𝑖 ≠ 𝑘
A further consequence of choosing 𝛼𝑖 as a random effect is that, the expected
value in (4.2) must be considered a second time and must be specified with
more details. Assuming that 𝛼∗ denotes the general random animal effect on
the observed body weight. For a given animal 𝑖, the effect is then 𝛼𝑖 which is a
realized but unobservable value of the distribution of the 𝛼∗ effects. Therefore
in (4.2) the expected value of 𝑦𝑖𝑗 is conditional on the fact that the random
variable 𝛼∗ takes the value 𝛼𝑖. Hence (4.2) is a conditional mean𝐸(𝑦𝑖𝑗|𝛼∗ = 𝛼𝑖) = 𝜇 + 𝛼𝑖 (4.3)

For notational simplicity, the 𝛼∗ is often ommitted. Taking expectation over 𝛼∗
leads to 𝐸𝛼∗ [𝐸(𝑦𝑖𝑗|𝛼𝑖)] = 𝐸(𝑦𝑖𝑗) = 𝜇 (4.4)

The residuals are defined as𝑒𝑖𝑗 = 𝑦𝑖𝑗 − 𝐸(𝑦𝑖𝑗|𝛼𝑖) = 𝑦𝑖𝑗 − (𝜇 + 𝛼𝑖) (4.5)

With that definition, we can establish the model equation for an observation 𝑦𝑖𝑗
as 𝑦𝑖𝑗 = 𝜇 + 𝛼𝑖 + 𝑒𝑖𝑗 (4.6)

The properties of the residuals are assumed analogously to the fixed effects
model. In summary, the properties are listed as

• the expected value of the residuals are all 0, 𝐸(𝑒𝑖𝑗) = 0
• the variances of the residuals are all equal to 𝜎2𝑒 , 𝑣𝑎𝑟(𝑒𝑖𝑗) = 𝐸(𝑒2𝑖𝑗) = 𝜎2𝑒
• all residuals are independent, 𝑐𝑜𝑣(𝑒𝑖𝑗, 𝑒𝑖′𝑗′) = 0 ∀𝑖, 𝑖′ and ∀𝑗, 𝑗′ except 𝑖 =𝑖′ and 𝑗 = 𝑗′
• residuals are independen of 𝛼𝑖 effects, 𝑐𝑜𝑣(𝑒𝑖𝑗, 𝛼𝑘) = 0 ∀𝑖, 𝑗, 𝑘

Together with (4.6), we can establish the total variance of all observations 𝑦𝑖𝑗
as 𝑣𝑎𝑟(𝑦𝑖𝑗) = 𝑣𝑎𝑟(𝜇 + 𝛼𝑖 + 𝑒𝑖𝑗) = 𝜎2𝛼 + 𝜎2𝑒 = 𝜎2𝑦 (4.7)

This shows that the variance (𝜎2𝑦) can be decomposed into the two variance
components 𝜎2𝛼 and 𝜎2𝑒 . It is also noted that the intra-class covariance which
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corresponds to the covariance between body weights for the same animal can
be written as𝑐𝑜𝑣(𝑦𝑖𝑗, 𝑦𝑖𝑗′) = 𝑐𝑜𝑣(𝜇 + 𝛼𝑖 + 𝑒𝑖𝑗, 𝜇 + 𝛼𝑖 + 𝑒𝑖𝑗′) = 𝜎2𝛼 for 𝑗 ≠ 𝑗′ (4.8)

4.1.3.1 Package lme4

In R, one of the packages that can handle random effects models is the package
lme4. For the dataset in Table 4.4, this can be done as follows

library(lme4)
lmer_bw_rep <- lmer(`Body Weight` ~ (1 | Animal), data = tbl_rep_obs_no_breed)
summary(lmer_bw_rep)

## Linear mixed model fit by REML ['lmerMod']
## Formula: `Body Weight` ~ (1 | Animal)
## Data: tbl_rep_obs_no_breed
##
## REML criterion at convergence: 82.7
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.36360 -0.50301 0.06086 0.26850 1.43838
##
## Random effects:
## Groups Name Variance Std.Dev.
## Animal (Intercept) 954.34 30.892
## Residual 22.98 4.794
## Number of obs: 12, groups: Animal, 4
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 503.39 15.51 32.46
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4.1.4 Mixed Linear Effects Models

A fixed general mean 𝜇 or a fixed intercept term 𝑏0 and random residual term𝑒 occur in almost all models that were presented so far. Apart from these, all
other effects were either all fixed or random1. We now consider models where
some effects (other than 𝜇 and 𝑒) are fixed and some are random. Such models
are called mixed linear effects models2.
An example dataset which could be analysed with a mixed linear effects model
would be, if we would add to each animal in our reference dataset on body
weight, breast circumference and breed also the sire of each animal. If some
of these animals would share the same sire and hence would be half sibs, the
dataset would again as already seen in the repeated observations data, a specific
variance structure. This is due to the fact that body weights from half sibs would
be expected to be more similar than observations from unrelated animals.

Table 4.5: Body Weight, Breast Circumference, Breed and Sire of
Beef Cattle Animals

Animal Body Weight Breast Circumference Breed Sire
1 471 176 Angus S1
2 463 177 Angus S1
3 481 178 Simmental S3
4 470 179 Angus S2
5 496 179 Simmental S3
6 491 180 Simmental S4
7 518 181 Limousin S5
8 511 182 Limousin S5
9 510 183 Limousin S6

10 541 184 Limousin S6

When fitting a mixed linear effects model to a dataset as shown in Table 4.5, the
question is which effects should be taken as fixed and which should be considered
to be random. As already mentioned in this case, Breast Circumference and
Breed would be modelled as fixed effects and Sire would be modelled as a
random effect. In general, there are not strict rules that would tell us which
effects should be modelled as fixed effects an which ones should be considered as
random. In our dataset we can certainly say that for Breast Circumference
and Breed we are interested in the effect sizes of the values that are observed
in the given datasets. In contrasts to that, we can say that the included sires

1Except for a small introduction into repeated measures models, we have not really look
at random models in great detail. But they are not of great importance to the treatment of
mixed models.

2Sometimes these models are just called mixed models. We are using these terms inter-
changably
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are a random sample of a larger population of sires. Furthermore, the primary
interest in the sire effects are in the imposed covariance structure of the data
due to the sire effects. In the case where the primary interest is in the variance
imposed by a certain effect, then the respective effect has to be modelled as a
random effect.
The general mixed effects model can be written as

y = Xb + Zu + e (4.9)

where y is the vector of observations, b is the vector of fixed effects, u is the
vector of random effects, X and Z are incidence matrices and e is the vector of
random residuals. The random effects are assumed to have expected values of
zero and given specific variance-covariance matrices. Hence we can write

𝐸 ⎡⎢⎣ y
u
e

⎤⎥⎦ = ⎡⎢⎣ Xb
0
0

⎤⎥⎦ (4.10)

The variance-covariance matrices are specified as

𝑣𝑎𝑟 ⎡⎢⎣ y
u
e

⎤⎥⎦ = ⎡⎢⎣ ZDZT + R ZD R
DZT D 0

R 0 R
⎤⎥⎦ (4.11)

with 𝑣𝑎𝑟(u) = 𝐸(uuT) = D and 𝑣𝑎𝑟(e) = 𝐸(eeT) = 𝑅.
Assuming V is not singular, the normal equations stemming from the general-
ized least squares are

X𝑇 V−1Xb0 = X𝑇 V−1y (4.12)

with a solution

b0 = (X𝑇 V−1X)−X𝑇 V−1y (4.13)

From that solution, we can get estimates of estimable functions for the fixed
effects as previously discussed for fixed models.
For the random effects u, the conditional expectation of u given the observations
y are of particular interest as estimators. Assuming multivariate normality for
u and e, we can write

û = 𝐸(u|y) = 𝐸(u) + 𝑐𝑜𝑣(u, y𝑇 )(𝑣𝑎𝑟(y))−1(y − 𝐸(y))= DZ𝑇 V−1(y − Xb) (4.14)
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Both terms, the solution for b0 and the estimate û depend on the inverse ma-
trix V−1 which can be extremely large and difficult to compute. In different
publications, the research group of Charles Henderson has shown that solving
the following system of equations leads to the same estimates for both the fixed
and the random effects. This system of equations is called Mixed Model
Equations and is shown below.

[ X𝑇 R−1X X𝑇 R−1Z
Z𝑇 R−1X Z𝑇 R−1Z + D−1 ] [ b̂

û ] = [ X𝑇 R−1y
Z𝑇 R−1y ] (4.15)

4.2 Pedigree BLUP

The linear mixed effects models as shown above can be applied to datasets in
livestock breeding. In such a model, the response variable 𝑦 corresponds to
measurements or observations of phenotypic traits. The vector of fixed effects𝑏 contains all information about the known environment such as Breed, Herd,
Season, Age and possibly other predictors that have an influence on the re-
sponse. The random effects 𝑢 contain the breeding values of animals of interest
in our livestock breeding population. Once all the informations of the data
are collected, it can be transfered into model components. The model compo-
nents are then used to construct the mixed model equations. Solutions to these
equations provide estimates of fixed effects and predictions of breeding values.
Properties of the predicted breeding values can be summarized as

• Best: the predicted breeding values have minimum prediction error vari-
ance

• Linear: the predicted breeding values are linear functions of the data
• Unbiased: the expected value of the predicted breeding values is equal to

the expected value of the true breeding value
• Prediction: because breeding values cannot be observed, the results are

called predictions.

The above listed properties are often abbreviated as BLUP.

The application of linear mixed effects models to livestock breeding datasets
can be done in two different ways.

1. Sire model: only sires in the dataset get breeding values
2. Animal model: all animals in a datasets (also parents without observa-

tions) get breeding values
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4.2.1 Sire Model

In a sire model the vector u of random effects contains all sires in the dataset.
For the example data shown in Table 4.5, this corresponds to

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆1𝑆1𝑆3𝑆2𝑆3𝑆4𝑆5𝑆5𝑆6𝑆6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Because the sire breeding values (u) are random effects, we also have to specify
the expected value and the variance-covariance matrix of u. Because breeding
values are defined as deviations, the expected values of the sire breeding values
are zero. Hence

𝐸(u) = 0 (4.16)𝑣𝑎𝑟(u) = D (4.17)

with D beeing the variance-covariance matrix between the sire breeding values.
If the sires are not related, then D = 𝜎2𝑠 𝐼 where 𝜎2𝑠 is a sire variance component.
If the sires are related then D = 𝜎2𝑠 A𝑠 where A𝑠 is the sire relationship matrix
containing elements of probabilities of sharing allels based on identity by descent
between related sires as off-diagonal elements. The diagonal elements of A𝑠 are
all one.
For the moment, we assume that the variance component such as 𝜎2𝑠 are all
given. In reality, such components would also need to be estimated from the
data. The discussion on how to estimate variance components from the data is
deferred to a later chapter.

4.2.2 Animal Model

The major difference between the sire model and the animal model is that in
the animal model all animals in the dataset receive breeding values. Hence in
the dataset shown in Table 4.5, we would need to add the dams.
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Table 4.6: Body Weight, Breast Circumference, Breed, Sire and
Dam of Beef Cattle Animals

Animal Body Weight Breast Circumference Breed Sire Dam
1 471 176 Angus S1 D1
2 463 177 Angus S1 D2
3 481 178 Simmental S3 D3
4 470 179 Angus S2 D2
5 496 179 Simmental S3 D3
6 491 180 Simmental S4 D4
7 518 181 Limousin S5 D5
8 511 182 Limousin S5 D5
9 510 183 Limousin S6 D6

10 541 184 Limousin S6 D7

The vector u contains breeding values for all animals in the dataset, also from
parents that do not have observations. Hence

u =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑆1𝑆2...𝐷1𝐷2...12...10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The expected value and the variance-covariance matrix of u are defined as

𝐸(u) = 0 (4.18)𝑣𝑎𝑟(u) = D = A𝜎2𝑢 (4.19)

where the matrix A corresponds to the numerator relationship matrix. This
matrix contains the probabilities of two animals sharing alleles identical by
descent on the off-diagonal elements. The diagonal elements of A are computed
as one plus the inbreeding coefficient of an animal. The inbreeding coefficient
of an animal is given by half of the relationship coefficient of the parents.
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4.3 Genomic BLUP

The term genomic BLUP is used for the use of genomic information together
with pedigree data and phenotypic observations to predict breeding values.
Hence the goal is the same as with the pedigree-based BLUP animal model.
The main difference is just in the information that goes into the model. But
otherwise, the internal modelling mechanisms are the same as before.
The prediction of genomic breeding values which consists of objective of genomic
BLUP can be done in two ways. The two ways are

1. marker effect model
2. breeding value based model

4.3.1 Marker Effect Model

When using marker effect models to predict genomic breeding values, this is
done in two steps. In a first step marker effects are estimated from a reference
population. In that reference population all animals have a complete set of
marker genotypes as well as phenotypic observations of the trait of intertest. In
a second step the estimated marker effects (q̂𝑇 = [ ̂𝑞1 ̂𝑞2 … ̂𝑞𝑘 ]) are used
to predict genomic breeding values for any animal that has genomic information
in the form of marker genotypes available.
In Figure 4.3 the principle of the two step procedure to predict genomic breeding
values is shown. A possible linear model to estimate SNP-marker-effects based
on the data from the reference population can be defined as follows𝑦 = 𝑋𝑏 + 𝑀𝑞 + 𝑒 (4.20)

where 𝑚 number of SNP markers𝑦 vector of observations𝑏 vector of fixed effects𝑋 design matrix linking fixed effects to observations𝑞 random genetic effect of SNP-marker-genotypes𝑀 design matrix linking SNP-genotype effects to observations𝑒 vector of random residuals
The mixed-model equations resulting from models given in (4.20) have the fol-
lowing structure

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑀𝑀𝑇 𝑅−1𝑋 𝑀𝑇 𝑅−1𝑀 + 𝐼 ∗ 𝜆 ] [ ̂𝑏 ̂𝑞 ] = [ 𝑋𝑇 𝑅−1𝑦𝑀𝑇 𝑅−1𝑦 ] (4.21)

where
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Reference Population

Animal 1

SNP1 SNP2 SNPk...

Animal 2

SNP1 SNP2 SNPk...

Animal N

SNP1 SNP2 SNPk...

.

.

.

.

.

.

y1

y2

yN

Estimate Marker Effects

q1 q2 qk...

Animal N+1

SNP1 SNP2 SNPk...

Animal N+2

SNP1 SNP2 SNPk
...

Animal N+M

SNP1 SNP2 SNPk
...

.

.

.

Genomic Breeding Values

Observations

Figure 4.3: Principle of Two-Step Genomic Prediction of Breeding Values

𝜆 = 𝜎2𝑒𝜎2𝑞 (4.22)

In (4.22) 𝜎2𝑞 is the total genetic variance explained by the given markers in the
dataset
The solutions for ̂𝑞 from (4.21) correspond to the SNP-genotype effects. The
predicted breeding value �̂� for any selection candidate 𝑖 with genomic informa-
tion is then computed as �̂�𝑖 = 𝑀𝑖 ⋅ ̂𝑞 (4.23)

where 𝑀𝑖 corresponds to the vector of SNP-genotypes of selection candidate 𝑖.
4.3.2 Breeding Value Based Model

The use of breeding value based models to predict genomic breeding values is
also known as single-step prediction of genomic breeding values. As the term
single-step already alludes to, with this method genomic breeding values are
predicted directly from the data. This is done by directly integrating genomic
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breeding values into the mixed linear effects model where the random effects in
the model are the genomic breeding values.
When only looking at the model for predicting genomic breeding values, it looks
similar to the pedigree-based animal model as shown below.𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒 (4.24)

The mixed model equations to get solutions used for estimates of fixed effects
and predicted genomic breeding values can be written as

[ 𝑋𝑇 𝑅−1𝑋 𝑋𝑇 𝑅−1𝑍𝑍𝑇 𝑅−1𝑋 𝑍𝑇 𝑅−1𝑍 + 𝐷−1 ] [ ̂𝑏�̂� ] = [ 𝑋𝑇 𝑅−1𝑦𝑍𝑇 𝑅−1𝑦 ] (4.25)

The difference to the pedigree-based animal model is the matrix 𝐷 which de-
pended on the numerator realtionship matrix 𝐴 for the animal model. In single-
step genomic BlUP, the matrix 𝐷 corresponds to𝐷 = 𝐺 ∗ 𝜎2𝑢
where 𝐺 corresponds to the genomic relationship matrix and 𝜎2𝑢 is taken to be
the genetic-additive variance. How the matrix 𝐺 is constructed is shown in the
next section.

4.4 Genomic Relationship Matrix

The variance-covariance matrix between the genetic effects 𝑢 in model (4.24) is
proportional to the genomic relationship matrix 𝐺. Analogously to the tradi-
tional BLUP animal model where the variance-covariance matrix of the random
breeding values is proportional to the numerator relationship matrix 𝐴.

4.4.1 Derivation of 𝐺
Because the traditional pedigree-based BLUP animal model is very well re-
spected in animal breeding and the defined model (4.24) produces an analogy of
the genomic evaluation model to the already known animal model the following
properties of 𝑢 and the genomic relationship matrix 𝐺 are essential.

1. The genomic breeding values 𝑢 should correspond to a linear combination
of the single SNP-effects 𝑞

2. The genomic breeding values 𝑢 should be defined as deviations from a
common mean, leading to the expected value 𝐸 [𝑢] = 0.
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3. The variance-covariance matrix of the vector 𝑢 corresponds to the product
of 𝐺 times a common variance component 𝜎2𝑢.

4. The genomic relationship matrix 𝐺 should be similar to the numerator
relationship matrix 𝐴. The diagonal elements should be close to 1 and
off-diagonal elements of animals that are related should have higher values
than elements between unrelated animals.

The matrix 𝐺 can be computed based on SNP genotypes. In what follows the
material of [VanRaden, 2008] and [Gianola et al., 2009] is used to derive the
genomic relationship matrix.

4.4.2 Linear Combination of SNP Effects

Based on the SNP marker information the marker effects in the vector 𝑞 can be
estimated. Hence, we assume that the vector 𝑞 is known. The property that𝑢 should be a linear combination of the effects in 𝑞 means that there exists a
matrix 𝑈 for which we can write 𝑢 = 𝑈 ⋅ 𝑞 (4.26)

The matrix 𝑈 is determined based on the desired properties described above.

4.4.3 Deviation

The genomic breeding values 𝑢 should be defined as deviation from a common
basis. Due to this definition the expected value of the genetic effect is determined
by 𝐸 [𝑢] = 0. This requirement has the following consequences for the matrix𝑈 .

Let us have a look at the random variable 𝑤 which takes the SNP-genotype
codes in the matrix 𝑀 in the marker effect model. Let us further assume that
the SNP loci are in Hardy-Weinberg equilibrium. Then 𝑤 can take the following
values

𝑤 = ⎧{⎨{⎩ −1 with probability (1 − 𝑝)20 with probability 2𝑝(1 − 𝑝)1 with probability 𝑝2 (4.27)

The expected value of 𝑤 corresponds to

𝐸 [𝑤] = (−1)∗(1−𝑝)2 +0∗2𝑝(1−𝑝)+1∗𝑝2 = −1+2𝑝−𝑝2 +𝑝2 = 2𝑝−1 (4.28)
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The matrix 𝑈 is computed as the difference between the matrix 𝑀 and the
matrix 𝑃 where the matrix 𝑃 corresponds to column vectors which have ele-
ments corresponding to 2𝑝𝑗 − 1 where 𝑝𝑗 corresponds to the allele frequency of
the positive allele at SNP locus 𝑗. The following table gives an overview of the
elements of matrix 𝑈 for the different genotypes at SNP locus 𝑗.

Genotype Genotypic Value Coding in Matrix 𝑈(𝐺2𝐺2)𝑗 −2𝑝𝑗𝑞𝑗 −1 − 2(𝑝𝑗 − 0.5) = −2𝑝𝑗(𝐺1𝐺2)𝑗 (1 − 2𝑝𝑗)𝑞𝑗 −2(𝑝𝑗 − 0.5) = 1 − 2𝑝𝑗(𝐺1𝐺1)𝑗 (2 − 2𝑝𝑗)𝑞𝑗 1 − 2(𝑝𝑗 − 0.5) = 2 − 2𝑝𝑗
Here we assume that for a locus 𝐺𝑗, the allele (𝐺1)𝑗 has a positive effect and
occurs with frequency 𝑝𝑗. We can now verify that with this definition of 𝑈 , the
expected value for a genetic effect determined by the locus 𝑗 corresponds to

𝐸 [𝑢]𝑗 = [(1 − 𝑝𝑗)2 ∗ (−2𝑝𝑗) + 2𝑝𝑗(1 − 𝑝𝑗)(1 − 2𝑝𝑗) + 𝑝2𝑗 (2 − 2𝑝𝑗)] 𝑞𝑗= 0 (4.29)

4.4.4 Variance of Genomic Breeding Values

As already postulated the variance-covariance matrix of the genomic breeding
values should be proportional to the genomic relationship matrix 𝐺.𝑣𝑎𝑟(𝑢) = 𝐺 ∗ 𝜎2𝑢 (4.30)

Computing the same variance-covariance matrix based on equation (4.26)𝑣𝑎𝑟(𝑢) = 𝑈 ⋅ 𝑣𝑎𝑟(𝑞) ⋅ 𝑈𝑇 (4.31)

The variance-covariance matrix of the SNP effects is 𝑣𝑎𝑟(𝑞) = 𝐼 ∗ 𝜎2𝑞 . Inserting
this into (4.31) we get 𝑣𝑎𝑟(𝑢) = 𝑈𝑈𝑇 𝜎2𝑞 .

In [Gianola et al., 2009] the variance component 𝜎2𝑢 was derived from 𝜎2𝑞 leading
to

𝜎2𝑢 = 2 𝑚∑𝑗=1 𝑝𝑗(1 − 𝑝𝑗)𝜎2𝑞 (4.32)

Now we combine all relationships for 𝑣𝑎𝑟(𝑢) leading to



74 CHAPTER 4. MIXED LINEAR EFFECTS MODELS

𝑣𝑎𝑟(𝑢) = 𝐺 ∗ 𝜎2𝑢 = 𝑈𝑈𝑇 𝜎2𝑞 (4.33)

In (4.33), 𝜎2𝑢 is replaced by the result of (4.32).

𝐺 ∗ 2 𝑚∑𝑗=1 𝑝𝑗(1 − 𝑝𝑗)𝜎2𝑞 = 𝑈𝑈𝑇 𝜎2𝑞 (4.34)

Dividing both sides of (4.34) by 𝜎2𝑞 and solving for 𝐺 gives us a formula for the
genomic relationship matrix 𝐺

𝐺 = 𝑈𝑈𝑇2 ∑𝑚𝑗=1 𝑝𝑗(1 − 𝑝𝑗) (4.35)

4.5 How Does GBLUP Work

The genomic relationship matrix 𝐺 allows to predict genomic breeding values
for animals with SNP-Genotypes without any observation in the dataset. This
fact is the basis of the large benefit of genomic selection. As soon as a young
animal is born, its SNP genotypes can be determined and a genomic breeding
value can be predicted. This genomic breeding value is much more accurate
then the traditional breeding value based only on ancestral information.

The BVM model given in (4.24) is a mixed linear effects model. The solution
for the unknown parameters can be obtained by solving the mixed model equa-
tions shown in (4.36). In this form the Inverse 𝐺−1 of 𝐺 and the vector �̂� of
predicted genotypic breeding values are split into one part corresponding to the
animals with observations and a second part for the animals without phenotypic
information.

⎡⎢⎣𝑋𝑇 𝑋 𝑋𝑇 𝑍 0𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝐺(11) 𝐺(12)0 𝐺(21) 𝐺(22)⎤⎥⎦ ⎡⎢⎣ ̂�̂�𝑢1�̂�2⎤⎥⎦ = ⎡⎢⎣𝑋𝑇 𝑦𝑍𝑇 𝑦0 ⎤⎥⎦ (4.36)

The matrix 𝐺(11) denotes the part of 𝐺−1 corresponding to the animals with
phenotypic observations. Similarly, 𝐺(22) stands for the part of the animals
without genotypic observations. The matrices 𝐺(12) and 𝐺(21) are the parts of𝐺−1 which link the two groups of animals. The same partitioning holds for
the vector of predicted breeding values. The vector �̂�1 contains the predicted
breeding values for the animals with observations and the vector �̂�2 contains
the predicted breeding values of all animals without phenotypic observations.
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Based on the last line of (4.36) the predicted breeding values �̂�2 of all animals
without phenotypic observations can be computed from the predicted breeding
values �̂�1 from the animals with observations.�̂�2 = − (𝐺22)−1 𝐺21�̂�1 (4.37)

Equation (4.37) is referred to as genomic regression of predicted breeding values
of animals without observation on the predicted genomic breeding values of
animals with observations.

4.6 Single Step Genomic BLUP With Real-
World Datasets

In real-world livestock breeding datasets not all animals are genotyped. But we
want to have predicted breeding values for all animals in a population. Futher-
more, the genomic information of the genotyped animals should also give more
accurate predicted breeding values for related animals without genomic infor-
mation.
The single step genomic BLUP model can be specified as𝑦 = 𝑋𝑏 + 𝑍𝑢 + 𝑒 (4.38)

with 𝑣𝑎𝑟(𝑢) = 𝐻 ∗ 𝜎2𝑢 and 𝑣𝑎𝑟(𝑒) = 𝐼 ∗ 𝜎2𝑒 . At this point it is important to note
that the vector 𝑢 of genomic breeding values can be split into two parts

𝑢 = [ 𝑢1𝑢2 ]
where 𝑢1 is the vector of breeding values for non-genotyped animals and 𝑢2 is
the vector of genotyped animals.

[ 𝑋𝑇 𝑋 𝑋𝑇 𝑍𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝜆 ∗ 𝐻−1 ] [ ̂𝑏�̂� ] = [ 𝑋𝑇 𝑦𝑍𝑇 𝑦 ] (4.39)

where here 𝜆 = 𝜎2𝑒/𝜎2𝑢.
The above required inverse matrix 𝐻−1 can be shown (e.g. in [Legarra et al.,
2014]) to correspond to

𝐻−1 = 𝐴−1 + ( 0 00 𝐺−1 − 𝐴−122 )
where 𝐴−1 is the inverse numerator relationship matrix and 𝐴22 corresponds to
the part of the numerator relationship matrix containing all genotyped animals.
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