
3 Fixed Linear Effects Models

3.1 Resources

Similarly to Chapter 2, this chapter on fixed linear effects models (FLEM) is based on
the work of (Bühlmann and Mächler 2016) and on the book (Searle 1971).

3.2 Introduction

In Chapter 2, we saw how linear regression analysis was used to describe and to quantify the
relationship between a response variable and between one or more predictor variables. The
type of analysis shown in Chapter 2 is called “regression analysis, because the response and
the predictors are all continuous variables. This means that the values of the variables in the
dataset are all floating-point numbers. For datasets where predictor variables are discrete, the
model is referred to as fixed linear effects model.

The reason why fixed linear effects models must be treated differently from regression models
can best be seen by looking at an extension of our example dataset on body weight of some
animals. Let us assume that besides the predictors that we have used so far, we have the breed
of the animal as an additional information. Animals of different breeds have different body
weights, hence we expect that the breed of the animal has an effect on its body weight. The
question is how is it possible to integrate the breed of the animal into a model that describes
and quantifies the different influence factors on body weight. First, we have a look at the
extended dataset.

Table 3.1: Extended Dataset on Body Weight for Beef Cattle Animals

Animal Breast Circumference Body Weight BCS HEI Breed
1 176 471 5.0 161 Angus
2 177 463 4.2 121 Angus
3 178 481 4.9 157 Simmental
4 179 470 3.0 165 Angus
5 179 496 6.8 136 Simmental
6 180 491 4.9 123 Simmental
7 181 518 4.4 163 Limousin
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Table 3.1: Extended Dataset on Body Weight for Beef Cattle Animals

Animal Breast Circumference Body Weight BCS HEI Breed
8 182 511 4.4 149 Limousin
9 183 510 3.5 143 Limousin

10 184 541 4.7 130 Limousin

The extension in our dataset consists of the breed for each animal. With this extension, the
immediate question of how to measure “breed” arises. The breed as it is in the dataset cannot
be integreated into our model. It must be converted into a numeric code. One possibility
is to assign each breed to a number according to how heavy an average animal of the breed
is expected to be. Because this assignment is difficult to do, as the body weight of animals
within a given breed show a certain variation. For our example, the following assignment of
breeds to numeric codes is assumed.

Table 3.2: Assignment of Breeds to numeric Codes

Code Breed
1 Angus
2 Limousin
3 Simmental

For reasons of simplicity, we assume that the variable “breed” is the only predictor in a simple
regression model 𝐸(𝑦𝑖) = 𝑏0 + 𝑏1𝑥𝑖 (3.1)

where 𝐸(𝑦𝑖) stands for the expected value of body weight (𝑦𝑖) of animal 𝑖, 𝑏0 is the intercept,𝑥𝑖 corresponds to the numeric code of the breed of animal 𝑖 and 𝑏1 is the regression coefficient
for the breed code. The influence of the predictor variable breed code on body weight could
be tested with the hypothesis 𝑏1 = 0 which is done by the function lm() in R.

Although this analysis as described is permissible, it does come with a number of problems
which show that the assumptions behind this type of model are unrealistic. This can best
be shown by looking at the expected values of body weight (BW) for animals of the different
breeds.

𝐸(BW Angus) = 𝑏0 + 𝑏1𝐸(BW Limousin) = 𝑏0 + 2𝑏1𝐸(BW Simmental) = 𝑏0 + 3𝑏1 (3.2)
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This means, for example, that

𝐸(BW Limousin) − 𝐸(BW Angus) = 𝐸(BW Simmental) − 𝐸(BW Limousin)𝐸(BW Simmental) − 𝐸(BW Angus) = 2 [𝐸(BW Limousin) − 𝐸(BW Angus)] (3.3)

Depending on the data, the relations shown in 3.3 might be quite unrealistic. And even without
data, only by the allocation of numerical codes to the different breed, the consequences shown
in 3.3 are forced on the analysis results. The only real estimates that the analysis yields are
the one of 𝑏0 and of 𝑏1. This will also be the case, if different numerical codes are used for the
different levels of the variable.

The inherent difficulty with the analysis suggested above is the allocation of numerical codes
to non-quantitative variables such as breed. Yet such varibles are of great interest in many
scientific areas. Allocating numerical codes to such variables involves at least two problems.

1. Often the assignment cannot be made in a reasonable way and is thereby to a large
extent an arbitrary process.

2. Making such allocations of numeric codes to different levels of a variable imposes value
differences on the categories of the variable such as shown in equation 3.3.

The above state problems can best be solved by using a type of model that is often referred
to as regession on dummy (0, 1) variables. In the context here, we are calling these models
just fixed linear effect models. The description of these models is deferred to Section 3.4. We
first describe an important exception in which the application of a linear regression model on
discrete variables is very reasonable and has a wide range of applications.

3.3 Linear Regression Analysis for Genomic Data

The question why linear regression models can be applied to genomic data is best answered by
looking at the data. In general, genomic breeding values can either be estimated using a two-
step procedure or by a single step approach. At the moment, we assume that we are in the first
step of the two step approach where we estimate the marker effects (𝑎-values) in a reference
population or alternatively we have a perfect data set with all animals genotyped and with a
phenotypic observation in a single step setting using a marker-effect model. Both situations
are equivalent when it comes to the structure of the underlying dataset. Furthermore the same
class of models can be used to analyse this type of data.
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3.3.1 Data

As already mentioned in Section 3.3, we are assuming that each animal 𝑖 has a phenotypic
observation 𝑦𝑖 for a given trait of interest. Furthermore, every animal has a genotype consisting
of only three SNP markers. The marker loci are called 𝐺, 𝐻 and 𝐼 . All markers have two
alleles each. Figure 3.1 tries to illustrate the structure of such a dataset used to estimate
marker effects for the three SNP.

Figure 3.1: Structure of Dataset To Estimate GBV

As can be seen from Figure 3.1 each of the 𝑁 animals have known genotypes for all three
SNP markers and they all have a phenotypic observation 𝑦𝑖 (𝑖 = 1, … , 𝑁). Because we are
assuming each SNP marker to be bi-allelic, there are only three possible marker genotypes at
every marker position. Hence marker genotypes are discrete entities with a fixed number of
levels. Hence, in principle the marker genotypes occur in discrete levels such as the breed of an
animal from dataset shown in Table 3.1. Because we are interested in the maker-effect at each
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locus and the relationships shown in equation 3.3 which are imposed by the use of a linear
regression model on the discrete genotype variables, contain the marker effects, the regression
model can be used for the analysis of genomic data. More details about the model will follow
in section Section 3.3.2.

3.3.2 Model

The goal of our data analysis using the dataset described in section Section 3.3.1 is to come
up with estimates for maker effects at each SNP locus. The marker effects can be used to
predict genomic breeding values for all animals in our dataset. The genomic breeding values
will later be used to rank the animals. The ranking of the animals according to the GBV is
used to select the parents of the future generation of livestock animals.

It seams reasonable to distinguish between two different types of models. On the one hand we
need a model that describes the underlying genetic architecture of the observed phenotypic
values in our dataset. We are using a so-called genetic model to describe the relationship
between genetic background and expressed phenotype of interest. On the other hand, we have
to be able to get estimates for marker effects and the GBVs which requires a statistical model.
Only with the latter we are going to be able to estimate unknown parameters as a function
of observed data. In the end, we will realize that the two models are actually the same model
but they are just different ways of looking at the same structure of the underlying phenomena.
These phenomena characterize the relationship between genetic architecture of an animal and
the expression of a certain phenotypic trait in that same animal.

3.3.3 Genetic Model

The availability of genomic information for all animals in the dataset makes it possible to
use a polygenic model. In contrast to an infinitesimal model, a polygenic model uses a finite
number of discrete loci to model the genetic part of an expressed phenotypic observation. From
quantitative genetics (see e.g. (Falconer and Mackay 1996) for a reference) we know that every
phenotypic observation 𝑦 can be separated into a genetic part 𝑔 and an environmental part 𝑒.
This leads to the very simple genetic model𝑦 = 𝑔 + 𝑒 (3.4)

The environmental part can be split into some fixed known systematic factors such as herd,
season effects, age and more and into a random unknown part. The systematic factors are
typically grouped into a vector of fixed effects. These effects are currently not of interest and
are ignored for the moment. To allow for more flexibility, we include a general intercept term𝜇 into the model. The unknown environmental random part is usually called 𝜖. This allows
to re-write the simple genetic model in Equation 3.4 as
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𝑦 = 𝜇 + 𝑔 + 𝜖 (3.5)

The genetic component 𝑔 can be decomposed into contributions from the finite number of loci
that are influencing the observation 𝑦. In our example dataset (see Figure 3.1) there are three
loci1 that are assumed to have an effect on 𝑦. Ignoring any interaction effects between the
three loci and thereby assuming a completely additive model, the overall genetic effect 𝑔 can
be decomposed into the sum of the genotypic values of each locus. Hence

𝑔 = 𝑘∑𝑗=1 𝑔𝑗 (3.6)

where for our example 𝑘 is equal to three2.

Considering all SNP loci to be purely additive which means that we are ignoring any dominance
effects, the genotypic values 𝑔𝑗 at any locus 𝑗 can just take one of the three values −𝑎𝑗, 0 or+𝑎𝑗 where 𝑎𝑗 corresponds to the 𝑎 value from the mono-genic model. For our example dataset
the genotypic value for each SNP genotype is given in the following table.

Table 3.3: Genotypic Values For All Three SNP-Loci

SNP Locus Genotype Genotypic Value𝑆𝑁𝑃1 𝐺1𝐺1 𝑎1𝑆𝑁𝑃1 𝐺1𝐺2 0𝑆𝑁𝑃1 𝐺2𝐺2 −𝑎1𝑆𝑁𝑃2 𝐻1𝐻1 𝑎2𝑆𝑁𝑃2 𝐻1𝐻2 0𝑆𝑁𝑃2 𝐻2𝐻2 −𝑎2𝑆𝑁𝑃3 𝐼1𝐼1 𝑎3𝑆𝑁𝑃3 𝐼1𝐼2 0𝑆𝑁𝑃3 𝐼2𝐼2 −𝑎3
From the Table 3.3 we can see that always the allele with subscript 1 is taken to be that with
the positive effect. Combining the information from Table 3.3 together with the decomposition
of the genotypic value 𝑔 in Equation 3.6, we get

1Implicitly, we are treating the SNP-markers to be identical with the underlying QTL. But based on the fact
that we have very many SNPs spread over the complete genome, there will always be SNP sufficiently close
to every QTL that influences a certain trait. But in reality the unknown QTL affect the traits and not the
SNPs.

2In reality 𝑘 can be 1.5∗105 for some commercial SNP chip platforms. When working with complete genomic
sequences, 𝑘 can also be in the order of 3 ∗ 107.
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𝑔 = 𝑚𝑇 ⋅ 𝑎 (3.7)

where 𝑚 is an indicator vector taking values of −1, 0 and 1 depending on the SNP marker
genotype and 𝑎 is the vector of 𝑎 values for all SNP marker loci. Combining the decomposition
in Equation 3.7 together with the basic genetic model in Equation 3.5, we get𝑦 = 𝜇 + 𝑚𝑇 ⋅ 𝑎 + 𝜖 (3.8)

The result obtained in Equation 3.5 is the fundamental decomposition of the phenotypic
observation 𝑦 into a genetic part represented by the SNP marker information (𝑚) and an en-
vironmental part (𝜇 and 𝜖). The 𝑎 values are unknown and must be estimated. The estimates
of the 𝑎 values will then be used to predict the GBVs. How this estimation procedure works
is described in the next section Section 3.3.4.

3.3.4 Statistical Model

When looking at the fundamental decomposition given in the genetic model presented in
Equation 3.8 from a statistics point of view, the model in Equation 3.8 corresponds to a linear
model. In a linear model, the response is explained by a linear function of the predictor
variables plus a random error term.

Using the decomposition given in our genetic model (see equation Equation 3.8) for our example
dataset illustrated in Figure 3.1, every observation 𝑦𝑖 of animal 𝑖 can be written as𝑦𝑖 = 𝜇 + 𝑀𝑖 ⋅ 𝑎 + 𝜖𝑖 (3.9)

where

• 𝑦𝑖 is the observation of animal 𝑖
• 𝜇 is a general intercept term
• 𝑎 is a vector of unknown additive allele substitution effects (𝑎 values)
• 𝑀𝑖 is an indicator row vector encoding the SNP genotypes of animal 𝑖 and
• 𝜖𝑖 is the random unknown environmental term belonging to animal 𝑖
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3.3.5 Genomic Regression Analysis

Although, the predictor variables in the model shown in Equation 3.9 are discrete genotypes
which can take only three states, namely the three genotypes of a biallelic locus, it is still
possible to model such genomic data with a regression model. The reason for this is that the
chosen encoding of the three genotypes into values −1, 0 and 1 is biologically meaningful.
This can be seen by looking at expectations of different phenotypic values. For reasons of
simplicity, we assume that the phenotypic value 𝑦 is only affected by a single bi-allelic locus 𝐺.
Furthermore, locus 𝐺 has a purely additive effect on the observed phenotypic values. Hence the
genotypic values of the three genotypes 𝐺1𝐺1, 𝐺1𝐺2 and 𝐺2𝐺2 at locus 𝐺 are 𝑎𝐺, 0 and −𝑎𝐺,
respectively. Hence for three animals with three different genotypes, the model Equation 3.9
can be written as

Animal i with genotype 𝐺1𝐺1
Animal j with genotype 𝐺1𝐺2
Animal k with genotype 𝐺2𝐺2

⎫}⎬}⎭ 𝑦𝑖 = 𝜇 + 1 ∗ 𝑎𝐺 + 𝜖𝑖𝑦𝑗 = 𝜇 + 0 ∗ 𝑎𝐺 + 𝜖𝑗𝑦𝑘 = 𝜇 + (−1) ∗ 𝑎𝐺 + 𝜖𝑘
From this we can see that the expected values of the phenotypic values can be written as

𝐸(𝑦𝑖) = 𝜇 + 𝑎𝐺𝐸(𝑦𝑗) = 𝜇𝐸(𝑦𝑘) = 𝜇 − 𝑎𝐺
The differences between the expectations of the phenotypic values of animals with different
genotypes can now be written as𝐸(𝑦𝑖) − 𝐸(𝑦𝑗) = 𝐸(𝑦𝑗) − 𝐸(𝑦𝑘) = 𝑎𝐺
This difference corresponds to the allele substitution effect 𝑎𝐺 at locus 𝐺. Hence the chosen
encoding of the genotypes 𝐺1𝐺1, 𝐺1𝐺2 and 𝐺2𝐺2 as 1, 0 and −1 has an internal biologi-
cal meaning and the regression coefficient of the observed phenotypic values on the encoded
genotypes provides the allele substitution effect.

3.4 Regression On Dummy Variables

In general, both the response variable and the predictor variables of a regression model are con-
tinuous variables. Examples of such variables are body weight and breast circumference
which are both measured and the measurements are expressed as real numbers. In contrast
to such a regression model, the predictor variable Breed in the extended dataset given in
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Table 3.1 is a discrete variable. That means, observations of such a variable can only take
a certain number of values. These values are determined by the nature of the variable. For
our example with the breeds of animals, the observed values can only come from the existing
breeds of that species from which the observations were generated.

The discussion of regression on dummy variables is fascilitated by the notioon of factors and
levels. This terminology is adapted from the literature of experimental design. In the study
of the influence of an animals breed on its body weight, we are interested in the extent to
which each breed is associated to the body weight. Thus we want to see whether a group of
animals from a particular breed show specific values for their body weights and whether these
values are different from the body weights of animals from a different breed.

The problem of discrete variables not being measureable is acknowledged by the introduction
of the terms “factor” and “levels”. Hence a discrete variable is referred to as a “factor”. The
possible values that a factor can take are called “levels”. The concept of levels enables us
to quantify differences between the effects that different levels of a factor have on a certain
response variable. Translating the concept of levels and factors to our extended dataset (Ta-
ble 3.1) means that the breed of an animal is a “factor” and the different breeds are correspond
to the different levels of the factor “breed”.

3.4.1 Model

The goal of the model that we are going to develop is to quantify the effect of each level of
the factor “breed” on the response variable “body weight”. In a first step, all other variables
with a potential influence on body weight are ignored. Hence, we are just looking at the
possible effect of the breed on body weight. This is done by setting up a regression on three
independent variables 𝑥1, 𝑥2 and 𝑥3𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + 𝑏3𝑥𝑖3 + 𝑒𝑖 (3.10)

In this context 𝑦𝑖 is the body weight of animal 𝑖 and 𝑏0 and 𝑒𝑖 are the intercept and the random
error term which were already found in the regression analysis of Chapter 2. Corresponding to
the independent variables 𝑥1, 𝑥2 and 𝑥3 are the regression coefficents 𝑏1, 𝑏2 and 𝑏3, respectively.
Depending on the definition of the independent variables 𝑥, the regression coefficients 𝑏 will
turn out to be terms that lead to estimates of the differences of the effects of the different
levels on the response variable.

For the definition of the independent variables 𝑥, it is important to note that each animal can
only have one breed3 associated to it. Each level of the factor “breed” is assigned to one of
the indendent variables 𝑥1, 𝑥2 or 𝑥3. This assignment is completely arbitrary. The assignment
given in Table 3.4 is proposed.

3At this point, we assume that all animals are pure-bred. Alternatively, we would interpret crosses as further
distinct levels of the factor “breed”.
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Table 3.4: Assignment of Breeds to Independen Variables

Breed Independent Variable
Angus 𝑥1
Limousin 𝑥2
Simmental 𝑥3

For a given animal 𝑖 that is in breed 𝑗, the independent variable assigned to breed 𝑗 is 1 and
all other independent variables are set to 0. This means for animal 1 from breed Angus, the
variable 𝑥1 is set to 1 and all other variables are set to 0.

For our example shown in Table 3.1 when only looking at body weight as response and breed
as a factor, 𝑦𝑖𝑗 stands for the 𝑗𝑡ℎ animal with breed-level 𝑖. Then with 𝑒𝑖𝑗 = 𝑦𝑖𝑗 − 𝐸(𝑦𝑖𝑗),
the model is the same as in Chapter 2, except for the two subscripts and for the ordering the
observations according to the levels of the breed factor.

𝑦11 = 𝑏0 + 𝑏1 ∗ 1 + 𝑏2 ∗ 0 + 𝑏3 ∗ 0 + 𝑒11𝑦12 = 𝑏0 + 𝑏1 ∗ 1 + 𝑏2 ∗ 0 + 𝑏3 ∗ 0 + 𝑒12⋯ = ⋯𝑦33 = 𝑏0 + 𝑏1 ∗ 0 + 𝑏2 ∗ 0 + 𝑏3 ∗ 1 + 𝑒33 (3.11)

The system of equations shown in 3.11 can be converted into matrix-vector notation which
turns the model in the familiar form

y = Xb + e (3.12)

where y and e are both vectors of the same length as there are observations in the dataset
and are defined the same way as in the regression in Chapter 2. The vector b contains the
intercept as the first component and regression coefficients for each level of the factor “breed”
in the model. The matrix X is called “design matrix” and contains zeros and ones that link
the regression coefficients of the appropriate level to the observations.

Analogously to the regression model in Chapter 2 the properties of the components in vector
e of random residuals are such that 𝐸(e) = 0 and 𝑣𝑎𝑟(e) = 𝐼𝜎2. Applying the least squares
procedure to Equation 3.12 yields the same normal equations

X𝑇 Xb(0) = X𝑇 y (3.13)

Due to the definition of the matrix X, it does not have full column rank. Thus the models as
shown in Equation 3.12 that contains factors is also referred to as “models not of full rank”.
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An important consequence of the rank deficiency of the matrix X is that the inverse (X𝑇 X)−1
of (X𝑇 X) does not exist. However the use of a generalized inverse of (X𝑇 X) solutions to the
normal equation Equation 3.13 can be found.

3.4.2 Parameter Estimation In Models Not Of Full Rank

The goal of model Equation 3.12 is to get an estimate for the unknown parameters in vector
b.

The normal equations in Equation 3.13 are written with the symbol b(0) to denote that the
equations do not have a single solution b(0) in the sense that we were able to compute them
in the case of the regression model. In the case where 𝑋𝑇 𝑋 is singular, there are infinitely
many solutions b(0). These solutions can be expressed as

b(0) = (X𝑇 X)−X𝑇 y (3.14)

where (X𝑇 X)− stands for a generalized inverse of the matrix (X𝑇 X).
3.4.3 Generalized Inverse Matrices

A generalized inverse matrix G of a given matrix A is defined as the matrix that satisfies the
equation AGA = A. The matrix G is not unique. Applying the concept of a generalized
inverse to a system of equations Ax = y, it can be shown that x = Gy is a solution, if G
is a generalized inverse of A. Because G is not unique, there are infinitely many solutions
corresponding to x̃ = Gy + (GA − I)z where z can be an arbitrary vector of consistent
length. Applying these statements concerning generalized inverses and solutions to systems of
equations to Equation 3.14, it means that b(0) is not a unique solution to Equation 3.13 because
the generalized inverse (X𝑇 X)− is not unique. As a consequence of that non-uniqueness, the
solution b(0) is not suitable as an estimate of the unknown parameter vector b.

3.4.4 Estimable Functions

The numeric solution of the analysis of the example dataset given in Table 3.1 is the topic of an
exercise. When developing that solution, we will see that some linear functions of b(0) can be
found which do not depend on the choice of the generalized inverse (X𝑇 X)−. Such functions
are called estimable functions and can be used as estimates for the respective functions of
the unknown parameter vector b. The idea of estimable functions can be demonstrated with
the following example.
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Let us assume that we have a small data set of 6 animals with observations in a particular
traits and the breed of the animal as an independent factor. The dataset for that example is
given in Table 3.5.

Table 3.5: Example Showing Estimable Functions

Animal Breed Observation
1 Angus 16
2 Angus 10
3 Angus 19
4 Simmental 11
5 Simmental 13
6 Limousin 27

As shown before, we want to estimate the effect of the breed on the observation. This can be
done with the following fixed effects model.

y = Xb + e
with

y = ⎡⎢⎢⎢⎢⎢⎣
161019111327

⎤⎥⎥⎥⎥⎥⎦
, X = ⎡⎢⎢⎢⎢⎢⎣

1 1 0 01 1 0 01 1 0 01 0 1 01 0 1 01 0 0 1
⎤⎥⎥⎥⎥⎥⎦

and b = ⎡⎢⎢⎣
𝜇𝛼1𝛼2𝛼3

⎤⎥⎥⎦
The vector b of unknown parameters consist of the intercept 𝜇 which was previously called𝑏0 and the three breed effects 𝛼1, 𝛼2 and 𝛼3. Based on the above information, the normal
equations can be written as

⎡⎢⎢⎣
6 3 2 13 3 0 02 0 2 01 0 0 1⎤⎥⎥⎦ ⎡⎢⎢⎣

𝜇0𝛼01𝛼02𝛼03
⎤⎥⎥⎦ = ⎡⎢⎢⎣

96452427⎤⎥⎥⎦
The above equations have infinitely many solutions. Four of them are shown below in Ta-
ble 3.6.
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Table 3.6: Solution of Normal Equations

Elements of Solution 𝑏01 𝑏02 𝑏03 𝑏04𝜇0 14 15.5 15.25 1519.5𝛼01 1 -0.5 -0.25 -1504.5𝛼02 -2 -3.5 -3.25 -1507.5𝛼03 13 11.5 11.75 -1492.5

The differences between the same elements in the four numerical solutions make it clear why
no solution b0 can be used as estimates for the unknown parameters in b.

This problem can be addressed, if we are not considering the single elements of a solution
vector b0, but linear functions of these elements. Examples of such linear functions are shown
in Table 3.7.

Table 3.7: Estimates of Estimable Functions

Linear Function 𝑏01 𝑏02 𝑏03 𝑏04𝛼01 − 𝛼02 3.0 3.0 3.0 3.0𝜇0 + 𝛼01 15.0 15.0 15.0 15.0𝜇0 + 1/2(𝛼02 + 𝛼03) 19.5 19.5 19.5 19.5

The values of the expressions shown in Table 3.7 are invariant to whatever solution 𝑏0 is
selected. Because this invariance statement is true for all solutions b0, these functions are of
special interest which corresponds to

• 𝛼01 − 𝛼02: estimate of the difference between breed effects for Angus and Simmental
• 𝜇0 + 𝛼01: estimate of the general mean plus the breed effect of Angus
• 𝜇0 + 1/2(𝛼02 + 𝛼03): estimate of the general mean plus mean effect of breeds Simmental

and Limousin

3.4.4.1 Definition of Estimable Functions

In summary the underlying idea of estimable functions are that they are linear functions of
the parameters b that do not depend on the numerical solutions b0 of the normal equations.
Because estimable functions are functions of the parameters b, they can be expressed as q𝑇 b
where q𝑇 is a row vector. In a more formal way estimable functions can be described by the
following definition.

A (linear) function of the parameters 𝑏 is defined as estimable, if it is identically equal to
some linear function of the expected value of the vector of observations 𝑦.

34



This means the linear function q𝑇 b is estimable, if

q𝑇 b = t𝑇 𝐸(y)
for some vector t. That means, if there exists a vector t, such that t𝑇 𝐸(y) = q𝑇 b, then q𝑇 b
is said to be estimable. For our example shown in Table Table 3.5, the expected value of the
observations of all animals with breed Angus is obtained by𝐸(𝑦1𝑗) = 𝜇 + 𝛼1
with t𝑇 = [ 1 1 1 0 0 0 ] and q𝑇 = [ 1 1 0 0 ]
3.4.5 Properties of Estimable Functions

Among the many properties we are here just listing the ones that are considered important.
The complete list of properties can be found in (Searle 1971).

3.4.5.1 Form of Estimable Function

If q𝑇 b is estimable, then q𝑇 b = t𝑇 𝐸(y) for some t. By definition 𝐸(y) = Xb and therefore,
q𝑇 b = t𝑇 Xb. Because estimability is not a concept that depends on b, this result is true for
all values of b. Therefore

q𝑡 = t𝑇 X
for some vector t.

3.4.5.2 Invariance to Solutions b0
If q𝑇 b is estimable, the linear function q𝑇 b0 is invariance to whatever solution of the normal
equation

X𝑇 Xb0 = X𝑇 y
is used for b0. This is because

q𝑇 b0 = t𝑇 Xb0 = t𝑇 XGX𝑇 y
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where G is a generalized inverse of X𝑇 X and XGX𝑇 is invariant to G which means that it
is the same for any choice of G. This can be seen by the definition of 𝐺 which has to satisfy
that

X𝑇 XGX𝑇 X = X𝑇 X
in order to be a generalised inverse of X𝑇 X. Because X𝑇 is not a null matrix, it follows
that XGX𝑇 X = X. For any other generalised inverse matrix F of X𝑇 X, we can write
analogeously to above with the generalised inverse G that X𝑇 XFX𝑇 X = X𝑇 X which implies
that XFX𝑇 = XGX𝑇 . This can be shown to be true for any generalised inverse of X𝑇 X

3.4.5.3 Testing for Estimability

A given function q𝑇 b is estimable, if some vector t can be found, such that t𝑇 X = q𝑇 . For a
known value of q, it might not be easy to find a vector t satisfying t𝑇 X = q𝑇 . Alternatively
to finding a vector t, estimability of q𝑇 b can also be investigated by seeing whether q has the
property that

q𝑇 H = q𝑇
with H = GX𝑇 X. This is proved by the fact that if q𝑇 b is estimable, then q𝑇 = t𝑇 X and
q𝑇 H = t𝑇 XH = t𝑇 XGX𝑇 X = t𝑇 X = q𝑇 .

3.4.5.4 BLUE of Estimable Function

BLUE stands for Best Linear Unbiased Estimation. The BLUE of the estimable function q𝑇 b
is q𝑇 b0 that is

q̂𝑇 b = q𝑇 b0 (3.15)

where here the “hat” stands for “BLUE of”. For a proof of Equation 3.15, it has to be shown
that properties of BLUE hold. The linearity holds because q𝑇 b0 is a linear function of the
observations, because q𝑇 b0 = q𝑇 GX𝑇 y. Unbiasedness is checked by inspecting 𝐸(q𝑇 b0)
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𝐸(q𝑇 b0) = q𝑇 𝐸(b0)= q𝑇 𝐸(GX𝑇 y)= q𝑇 GX𝑇 𝐸(y)= q𝑇 GX𝑇 Xb= q𝑇 Hb= t𝑇 XHb= t𝑇 Xb= q𝑇 b

using X = XH = XGX𝑇 X

To show that q𝑇 b0 is the best estimator among all linear estimators, we need to show that it
has minimum variance. The variance of q𝑇 b0 is

𝑣𝑎𝑟(q𝑇 b0) = q𝑇 ⋅ 𝑣𝑎𝑟(b0) ⋅ q= q𝑇 ⋅ 𝑣𝑎𝑟(GX𝑇 y) ⋅ q= q𝑇 GX𝑇 ⋅ 𝑣𝑎𝑟(y)XG𝑇 q= q𝑇 GX𝑇 XG𝑇 q𝜎2= q𝑇 GX𝑇 XG𝑇 X𝑇 t𝜎2= q𝑇 GX𝑇 t𝜎2= q𝑇 Gq𝜎2 (3.16)

with 𝑣𝑎𝑟(𝑦) = I𝜎2. Suppose k𝑇 y is some other linear unbiased estimator of q𝑇 b different from
q𝑇 b0. Because k𝑇 y is unbiased 𝐸(k𝑇 y) = q𝑇 b and so k𝑇 X = q𝑇 . Therefore,𝑐𝑜𝑣(q𝑇 b0, k𝑇 y) = 𝑐𝑜𝑣(q𝑇 GX𝑇 y, k𝑇 y) = q𝑇 GX𝑇 k 𝜎2 = q𝑇 Gq 𝜎2
Looking at the variance of the difference between q𝑇 b0 and k𝑇 y

𝑣𝑎𝑟(q𝑇 b0 − k𝑇 y) = 𝑣𝑎𝑟(q𝑇 b0) + 𝑣𝑎𝑟(k𝑇 y) − 2𝑐𝑜𝑣(q𝑇 b0, k𝑇 y)= 𝑣𝑎𝑟(k𝑇 y) − q𝑇 Gq 𝜎2= 𝑣𝑎𝑟(k𝑇 y) − 𝑣𝑎𝑟(q𝑇 b0) > 0
because a variance has to be positive. Hence 𝑣𝑎𝑟(k𝑇 y) > 𝑣𝑎𝑟(q𝑇 b0) which can be shown for
any linear unbiased estimator k𝑇 y and hence q𝑇 b0 is “best”.
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3.5 Contrasts

Contrasts are linear combinations of parameters. In R, contrasts are used to determine which
estimable functions are used to produce results of a linear model analysis that are shown to
a user. Furthermore, the user has the option to choose among different contrasts which are
already available by default. It is also possible for the user to create custom made contrasts.
This section introduces the basic idea of contrasts and how they are used in R.

Let us go back to our example datasets containing body weight and breed of different animals
shown in Table Table 3.8.

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

Table 3.8: Body Weight and Breed of Beef Cattle Animals

Animal Body Weight Breed
1 471 Angus
2 463 Angus
3 481 Simmental
4 470 Angus
5 496 Simmental
6 491 Simmental
7 518 Limousin
8 511 Limousin
9 510 Limousin

10 541 Limousin
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3.5.1 Contrasts in R

The contrasts used in R can be seen from the function contrasts(). For our example dataset
with body weight and breed of animals, we get

(mat_ctr <- contrasts(as.factor(tbl_flem_bw_breed$Breed)))

Limousin Simmental
Angus 0 0
Limousin 1 0
Simmental 0 1

The information in the above shown contrasts matrix reflects the model terms in the columns
of the matrix. Hence from the above matrix it can be seen that there are two terms associated
with breeds in any linear model that considers breed as a factor. These two terms are Limousin
and Simmental. The rows of the above shown contrasts matrix reflect the encoding of the
different levels in the dataset. All animals of breed Angus are encoded with both zeroes for the
two model terms. Limousin animals receive a code of 1 for the first model term and a code
of 0 for the second term. Animals of breed Simmental receive a 0 for the first term and a 1
for the second term. The above contrasts matrix does not show the intercept. The intercept
term is implicitly coded as 1 for all animals.

3.5.2 Model Matrix

The assignment of codes to the different data records can also be seen in the model matrix.
In R the model matrix is obtained as a result of the function model.matrix(). The model
matrix that goes together with the above shown contrasts for the factor Breed in our dataset
is shown below.

lm_bw_br <- lm(`Body Weight` ~ Breed, data = tbl_flem_bw_breed)
(mat_X <- model.matrix(lm_bw_br))

(Intercept) BreedLimousin BreedSimmental
1 1 0 0
2 1 0 0
3 1 0 1
4 1 0 0
5 1 0 1
6 1 0 1
7 1 1 0
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8 1 1 0
9 1 1 0
10 1 1 0
attr(,"assign")
[1] 0 1 1
attr(,"contrasts")
attr(,"contrasts")$Breed
[1] "contr.treatment"

From the above shown model matrix, it can be seen that the encoding contained in the contrasts
matrix is applied to the data records.

3.5.3 Estimable Functions

The type of estimable functions that are used in a given linear model analysis can be found
by first extending the contrasts matrix by a column of all ones, reflecting the encoding of the
intercept term.

mat_ctr_ext <- cbind(matrix(c(rep(1, nrow(mat_ctr))), ncol = 1), mat_ctr)
colnames(mat_ctr_ext)[1] <- colnames(mat_X)[1]
mat_ctr_ext

(Intercept) Limousin Simmental
Angus 1 0 0
Limousin 1 1 0
Simmental 1 0 1

The matrix of estimable functions is obtained by computing the inverse of the extended con-
trasts matrix

(mat_estf <- solve(mat_ctr_ext))

Angus Limousin Simmental
(Intercept) 1 0 0
Limousin -1 1 0
Simmental -1 0 1

Each row of the matrix of estimable functions corresponds to a model term. Each column can
be seen as one component of the solution to the least squares normal equation. The estimate of
the intercept term corresponds to the solution for the first breed level in the normal equations.
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The estimate for the model term Limousin corresponds to the difference beween the solution
for the second breed level minus the solution of the first breed level. The estimate of the effect
of the term Simmental is the difference between the last solution and the first breed level.

3.5.4 Validation

The results on the investigated connection between contrasts and estimable functions is val-
idated with our example dataset. For this validation, we first need a set of solutions to the
least squares normal equations. As the first step, we set up the design matrix X and use it to
compute the crossproduct X𝑇 X

mat_X <- model.matrix(lm(`Body Weight` ~ 0 + Breed, data = tbl_flem_bw_breed))
mat_X <- cbind(matrix(1, nrow = nrow(tbl_flem_bw_breed), ncol = 1), mat_X)
dimnames(mat_X) <- NULL
mat_xtx <- crossprod(mat_X)
mat_xtx

[,1] [,2] [,3] [,4]
[1,] 10 3 4 3
[2,] 3 3 0 0
[3,] 4 0 4 0
[4,] 3 0 0 3

The generalized inverse (X𝑇 X)− provided by the function MASS::ginv() of package MASS is
used to come up with a solution to the least squares normal equation

X𝑇 Xb0 = X𝑇 y

A solution for b0 is

b0 = (X𝑇 X)−X𝑇 y

For our dataset we get

vec_y <- tbl_flem_bw_breed$`Body Weight`
mat_xty <- crossprod(mat_X, vec_y)
mat_xtx_ginv <- MASS::ginv(mat_xtx)
mat_b0 <- crossprod(mat_xtx_ginv,mat_xty)
mat_b0

41



[,1]
[1,] 369.33333
[2,] 98.66667
[3,] 150.66667
[4,] 120.00000

These solutions are used to construct the effect results computed by the function lm() in R.
The summary table looks as follows

lm_bw_br <- lm(`Body Weight` ~ Breed, data = tbl_flem_bw_breed)
(smry_lm_bw_br <- summary(lm_bw_br))

Call:
lm(formula = `Body Weight` ~ Breed, data = tbl_flem_bw_breed)

Residuals:
Min 1Q Median 3Q Max

-10.0000 -7.5000 -0.1667 2.7500 21.0000

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 468.000 6.097 76.758 1.68e-11 ***
BreedLimousin 52.000 8.066 6.447 0.000351 ***
BreedSimmental 21.333 8.623 2.474 0.042575 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 10.56 on 7 degrees of freedom
Multiple R-squared: 0.8597, Adjusted R-squared: 0.8196
F-statistic: 21.44 on 2 and 7 DF, p-value: 0.001035

From the matrix of estimable functions

mat_estf

Angus Limousin Simmental
(Intercept) 1 0 0
Limousin -1 1 0
Simmental -1 0 1
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we can see that the intercept estimate corresponds to the mean body weight of all Angus
animals. Which is

library(dplyr)
mean((tbl_flem_bw_breed %>% filter(Breed == "Angus"))$`Body Weight`)

[1] 468

The estimate for the effect BreedLimousin is the difference between the third and the second
component in the solution vector b0
mat_b0[3] - mat_b0[2]

[1] 52

Similarly, the estimate for effect BreedSimmental is the difference between the last component
of the solution vector and the second component of the solution vector.

mat_b0[4] - mat_b0[2]

[1] 21.33333
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