
2 Linear Regression

2.1 Introduction

This chapter is based on the book (Searle 1971) and on the course notes (Bühlmann and
Mächler 2016). An interesting online book on Multiple Linear Regression is given by (Lilja
2016). Regression analysis is used to assess relationships between a given variable and other
measurements or observations on the same animal. The relationships between the variable
and the other characteristics of the animal are estimated based on observed data.

2.2 Example

A classical example of a regression analysis in animal science is the relationship between
body weight and breast circumference in cattle. This example has a practical application
because the results of the regression analysis of body weight on breast circumference can be
used for a measuring band. With such a measuring band the breast circumference of an
animal is measured. On the back side of the band, the estimated body weight can directly be
determined.

At this point the question is how is it possible to determine the relationship between the
values of breast circumference in centimeters and body weight in kilograms. The answer to
this question can be given by a regression analysis. The most important pre-requisites for
doing a regression analysis is to have a dataset. For our example, Table 2.1 shows such a
dataset which can be used for a regression analysis.

Table 2.1: Breast Circumference and Body Weight

Animal Breast Circumference Body Weight
1 176 471
2 177 463
3 178 481
4 179 470
5 179 496
6 180 491
7 181 518
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Animal Breast Circumference Body Weight
8 182 511
9 183 510

10 184 541

The dataset in Table 2.1 contains measurements of body weight and breast circumference for10 animals. Figure 2.1 is a graphical representation of our example dataset.

460

480

500

520

540

176 178 180 182 184
Breast Circumference

Bo
dy

 W
ei

gh
t

Figure 2.1: Breast Circumference and Body Weight

The diagram in Figure 2.1 shows on the x-axis the breast circumference in cm and on the
y-axis the body weight in kg. Each of the blue dots correspond to an observation of one
animal in the dataset. A diagram like the one shown in Figure 2.1 is also called a dot plot.
From a first visual inspection of the dot plot for our dataset, we can see that there is a
tendency that larger values of breast circumference of animals are related to heavier animals.
The relationship is not deterministic that means there are exceptions which do not follow the
rule of this relationship. One example of an exception are animals 1 and 2. Animal 2 has a
larger breast circumference value compared to animal 1, but animal 2 has a lower body weight
compared to animal 1. But despite such exceptions, we can still observe that on average there
is a relationship between breast circumference and body weight. Furthermore, the apparent
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relationship between breast circumference and body weight seams to be the same for low and
high values of breast circumference. Based on this last fact, we can say that the relationship
between breast circumference and body weight is linear.

Figure 2.2: Examples of Non-Linear Functions

Figure 2.2 shows two examples of non-linear functions. Both examples show that the rela-
tionship between the shown variables 𝑥 and 𝑦 is not the same over the shown range of values.
Hence by inspecting the diagram of the two variables breast circumference and body weight
of our example in Figure 2.1), we can say that the relationship between the variables of our
example dataset show a linear relationship.

2.3 Regression Model

With the regression model we want to find a mathematical formulation to describe and to
quantify the relationship between the two variables from our example, breast circumference
and body weight. One possibility to find this relationship is to take an animal with 𝑥 cm of
breast circumference. Then the question is what would be the expected value for its body
weight 𝑦 in kg. Under the assumption of a linear relationship between the variables from our
example, the expected value 𝐸(𝑦) for the body weight 𝑦 can be written as𝐸(𝑦) = 𝑏0 + 𝑏1 ∗ 𝑥 (2.1)
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The above reasoning on how the variables are related is often referred to as model building.
The model shown in Equation 2.1 is called a linear model, because the expected body weight
(𝐸(𝑦)) is a linear function of the unknown parameters 𝑏0 and 𝑏1. The number of possible
models between two variables 𝑥 and 𝑦 is infinite. And therefore the process of model building
is difficult and requires some experience. But in general, we can say that a simpler model
with fewer unknown parameters is always preferable over a more complex model as long as
the simpler model is able to capture the most important aspects of a relationship between two
variables.

2.4 Observations

For an animal with a breast circumference of 𝑥 cm, the body weight (𝑦) will not exactly be𝑏0 + 𝑏1 ∗ 𝑥. It has to be noted here that the values for 𝑏0 and 𝑏1 will be the same for all
animals. The fact of the discrepancy between the recorded body weights (𝑦) and the output of
the model is taken into account by writing 𝐸(𝑦) instead of 𝑦 in the model shown in equation
Equation 2.1. For a given observed body weight 𝑦𝑖 of animal 𝑖 with a breast circumference of𝑥𝑖, we can write 𝐸(𝑦𝑖) = 𝑏0 + 𝑏1 ∗ 𝑥𝑖 (2.2)

where 𝐸(𝑦𝑖) is not the same as 𝑦𝑖. The difference 𝑦𝑖 − 𝐸(𝑦𝑖) represents the difference between
the observed body weight from its expected value 𝐸(𝑦𝑖) and is written as𝑒𝑖 = 𝑦𝑖 − 𝐸(𝑦𝑖) = 𝑦𝑖 − 𝑏0 − 𝑏1 ∗ 𝑥𝑖 (2.3)

Hence for the body weight 𝑦𝑖 of animal 𝑖, we can write𝑦𝑖 = 𝑏0 + 𝑏1 ∗ 𝑥𝑖 + 𝑒𝑖 (2.4)

Equations Equation 2.2, Equation 2.3 and Equation 2.4 apply to all observations 𝑦1, 𝑦2, … , 𝑦10,
of our example dataset shown in Table 2.1. The 𝑒𝑖 terms for all observations might take many
different values. They include potential measurement errors or deficiencies of the model itself.
Due to the described properties of 𝑒𝑖’s, they are considered to be random variables and are
usually called random errors or random residuals.

To complete the description of our model in terms of equation Equation 2.4, further charac-
teristics of the random errors (𝑒𝑖) must be specified. These characteristics consist of

• the expected value 𝐸(𝑒𝑖) of 𝑒𝑖 and
• the variance 𝑣𝑎𝑟(𝑒𝑖) of 𝑒𝑖.
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Useful specifications are that the expected value 𝐸(𝑒𝑖) is zero and all covariances between any
pair of 𝑒𝑖 and 𝑒𝑗 with 𝑖 ≠ 𝑗 are also zero. Then the variance 𝑣𝑎𝑟(𝑒𝑖) is assumed to be a constant
for all 𝑖 and is represented by the symbol 𝜎2. Summarizing all the proposed properties in a
mathematical notation, we obtain 𝐸(𝑒𝑖) = 0 (2.5)

which is obtained from the definition of 𝑒𝑖 given in Equation 2.3. The variance 𝑣𝑎𝑟(𝑒𝑖)𝑣𝑎𝑟(𝑒𝑖) = 𝐸 [𝑒𝑖 − 𝐸(𝑒𝑖)]2 = 𝐸(𝑒2𝑖 ) = 𝜎2 (2.6)

and 𝑐𝑜𝑣(𝑒𝑖, 𝑒𝑗) = 𝐸 [𝑒𝑖 − 𝐸(𝑒𝑖)] [𝑒𝑗 − 𝐸(𝑒𝑗)] = 𝐸(𝑒𝑖𝑒𝑗) = 0 (2.7)

Equations Equation 2.2 - Equation 2.7 give a constitutional description of the linear model
that we have designed so far for our example dataset. These properties form the basis for the
procedure used to estimated the unknown parameters 𝑏0 and 𝑏1.

2.5 Parameter Estimation

There are several methods to estimate the unknown parameters 𝑏0 and 𝑏1 of the proposed
linear model. The most frequently used method which is also implemented in the R-function
lm() is called least squares.

Least squares estimation is based on the idea of minimizing the sum of the squared deviations
of the observations 𝑦𝑖 from their expected values. This sum can be written as

e𝑇 e = 𝑁∑𝑖=1 𝑒2𝑖 = 𝑁∑𝑖=1 [𝑦𝑖 − 𝐸(𝑦𝑖)]2 = 𝑁∑𝑖=1 [𝑦𝑖 − 𝑏0 − 𝑏1 ∗ 𝑥𝑖]2 (2.8)

where e𝑇 = [ 𝑒1 𝑒2 … 𝑒𝑁 ] is the transpose of the vector e of length 𝑁 containing all the𝑒𝑖 values and 𝑁 stands for the number of observations.

Although 𝑏0 and 𝑏1 are fixed (but unknown) values, we treat them for a moment like mathe-
matical variables. The reason for this changed view is that we want to find the values for 𝑏0
and 𝑏1 that minimize the expression in Equation 2.8. The resulting values from the minimiza-
tion of Equation 2.8 will be represented by the symbols ̂𝑏0 and ̂𝑏1 and they will be called the
least squares estimators of 𝑏0 and 𝑏1.
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Minimization of Equation 2.8 is done by taking partial derivatives with respect to both un-
knowns 𝑏0 and 𝑏1 and setting both derivatives to zero1. This yields two equations from which
solutions called 𝑏̂0 and ̂𝑏1 can be computed.

The partial derivative of the sum of the squared residuals with respect to 𝑏0 is

𝜕e𝑇 e𝜕𝑏0 = −2 𝑁∑𝑖=1 [𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖]= −2 [( 𝑁∑𝑖=1 𝑦𝑖) − 𝑁𝑏0 − 𝑏1 𝑁∑𝑖=1 𝑥𝑖] (2.9)

The partial derivative of the sum of the squared residuals with respect to 𝑏1 is

𝜕e𝑇 e𝜕𝑏1 = −2 𝑁∑𝑖=1 𝑥𝑖 [𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖]= −2 [ 𝑁∑𝑖=1 𝑥𝑖𝑦𝑖 − 𝑏0 𝑁∑𝑖=1 𝑥𝑖 − 𝑏1 𝑁∑𝑖=1 𝑥2𝑖 ] (2.10)

Setting both expression in Equations 2.9 and 2.10 to zero and writing them in terms of ̂𝑏0 and𝑏̂1 gives 𝑁𝑏̂0 + ̂𝑏1𝑥. = 𝑦. (2.11)

and 𝑏̂0𝑥. + ̂𝑏1(𝑥2). = (𝑥𝑦). (2.12)

using the dot notation for the following sums 𝑥. = ∑𝑁𝑖=1 𝑥𝑖, 𝑦. = ∑𝑁𝑖=1 𝑦𝑖, (𝑥2). = ∑𝑁𝑖=1 𝑥2𝑖 and(𝑥𝑦). = ∑𝑁𝑖=1 𝑥𝑖𝑦𝑖. With the bar notation for the means, we can further writē𝑥. = 𝑥.𝑁 (2.13)

and

1The verification of higher order derivative to confirm that the obtained extreme value is a minimum is not
done here.
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̄𝑦. = 𝑦.𝑁 (2.14)

The solutions in Equation 2.15 and Equation 2.16 can then be written as𝑏̂0 = ̄𝑦. − ̂𝑏1 ̄𝑥. (2.15)

and ̂𝑏1 = (𝑥𝑦). − 𝑁 ̄𝑥. ̄𝑦.(𝑥2). − 𝑁 ̄𝑥.2 (2.16)

2.6 Estimates for Example Dataset

The estimates as shown in Equation 2.15 and Equation 2.16 are computed for our example
dataset. We start by computing all the components of the formulas for the estimators, then
we plug those components in and get the results.𝑁 = 10, ̄𝑥. = 179.9, ̄𝑦. = 495.2, (𝑥𝑦). = 8.91393 × 105, (𝑥2). = 3.23701 × 105

̂𝑏1 = 8.91393 × 105 − 10 ∗ 179.9 ∗ 495.23.23701 × 105 − 10 ∗ 179.92 = 8.673 (2.17)

𝑏̂0 = 495.2 − 8.6732348 ∗ 179.9 = −1065.115 (2.18)

2.7 Obtain Parameter Estimates in R

As already mentioned, the same type of computation as shown in Section 2.6 is also imple-
mented in the R-function lm(). In what follows, we show how the estimates of the linear
regression model are obtained using lm(). An important pre-requisite for using the function
lm() is that the dataset is assigned to a dataframe. Here we assume that we have a dataframe
named tbl_reg that contains our dataset. Then the parameter estimates are obtained using
the following statements in R.

lm_bw_bc <- lm(`Body Weight` ~ `Breast Circumference`, data = tbl_reg)
summary(lm_bw_bc)
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Call:
lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl_reg)

Residuals:
Min 1Q Median 3Q Max

-17.3941 -6.5525 -0.0673 9.3707 13.2594

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -1065.115 255.483 -4.169 0.003126 **
`Breast Circumference` 8.673 1.420 6.108 0.000287 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 11.08 on 8 degrees of freedom
Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287

The output of the summary function shows a lot of information about the data and the model.
Under the section Coefficients there are two entries

• (Intercept) corresponding to our 𝑏0 and
• Breast Circumference corresponding to our 𝑏1.

The values in the first column entitled Estimate correspond to the values that we have com-
puted in the previous section.

2.8 The General Case

Suppose that in the study on body weight and breast circumference, we have an additional
observation for each animal consisting of the height of the animal. The new extended data set
is shown in Table 2.2.

Table 2.2: Extended Dataset of Breast Circumference, Height and Body Weight

Animal Breast Circumference Body Weight Height
1 176 471 161
2 177 463 121
3 178 481 157
4 179 470 165
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Animal Breast Circumference Body Weight Height
5 179 496 136
6 180 491 123
7 181 518 163
8 182 511 149
9 183 510 143

10 184 541 130

The model developed so far is not extended to be𝐸(𝑦) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 (2.19)

where 𝑥1 represents the breast circumference in cm, and 𝑥2 stands for the height of the animal
in cm. Thus for animal 𝑖 with a breast circumference of 𝑥𝑖1 cm and a height of 𝑥𝑖2 the body
weight 𝑦𝑖 can be written as 𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + 𝑒𝑖 (2.20)

As the number of 𝑥 variables increase, the equations such as shown in Equation 2.20 are getting
longer and they are getting tedious to handle. This problem is solved by a change of notation.
Let us define the matrix X and the vectors y, e and b as follows.

X = ⎡⎢⎢⎢⎢⎢⎣
𝑥10 𝑥11 𝑥12𝑥20 𝑥21 𝑥22. . .. . .. . .𝑥𝑁0 𝑥𝑁1 𝑥𝑁2

⎤⎥⎥⎥⎥⎥⎦
, y = ⎡⎢⎢⎢⎢⎢⎣

𝑦1𝑦2...𝑦𝑁

⎤⎥⎥⎥⎥⎥⎦
, e = ⎡⎢⎢⎢⎢⎢⎣

𝑒1𝑒2...𝑒𝑁

⎤⎥⎥⎥⎥⎥⎦
and b = ⎡⎢⎣𝑏0𝑏1𝑏2⎤⎥⎦

Because all equations contain the term 𝑏0, the first column of matrix X consists of all ones.
Hence, 𝑥10 = 𝑥20 = … = 𝑥𝑁0 = 1. The complete set of equations for all animals in our
extended dataset represented by Equation 2.20 is

y = Xb + e, with 𝐸(y) = Xb (2.21)

The big advantage of the matrix-vector notation is that equation Equation 2.21 is invariant
to the number of 𝑥-variables. That means no matter how many 𝑥-variables we include in our
dataset, the linear regression model can always be written as shown in equation Equation 2.21.
The only thing that changes are the definitions of X and b. In the general case with 𝑘
variables
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X = ⎡⎢⎢⎢⎢⎢⎣
𝑥10 𝑥11 . 𝑥1𝑘𝑥20 𝑥21 . 𝑥2𝑘. . . .. . . .. . . .𝑥𝑁0 𝑥𝑁1 . 𝑥𝑁𝑘

⎤⎥⎥⎥⎥⎥⎦
, b = ⎡⎢⎢⎢⎣

𝑏0𝑏1..𝑏𝑘
⎤⎥⎥⎥⎦

The topic of parameter estimation can also be shown using matrix-vector notation. The only
restriction that we are currently imposing is that the number of 𝑥-variables 𝑘 is smaller than
the number of observations 𝑁 .

The model specification is only complete, if the properties of the vector e of random residuals
is defined. In accordance with equations Equation 2.5, Equation 2.6 and Equation 2.7, we can
write 𝐸(e) = 0 (2.22)

where 𝐸(e) stands for the vector of length 𝑁 containing the expected values of all random
residuals and 0 is a vector of 𝑁 zeros and𝑣𝑎𝑟(e) = 𝐸 [e − 𝐸(e)] [e − 𝐸(e)]𝑇 = 𝐸(ee𝑇 ) = 𝜎2I𝑁 (2.23)

where 𝑣𝑎𝑟(e) is the variance-covariance matrix between all random residuals and I𝑁 is the𝑁 × 𝑁 identity matrix.

Derivation of the least squares estimator of b follows the same principles as shown in equations
2.9 - Equation 2.16. The sum of squares of the deviations of the observations from their
expected values using 𝐸(e) = 0 and hence 𝐸(y) = Xb, is

e𝑇 e = [y − 𝐸(y)]𝑇 [y − 𝐸(y)]= [y − Xb]𝑇 [y − Xb]= y𝑇 y − 2b𝑇 X𝑇 y + b𝑇 X𝑇 Xb (2.24)

The least squares estimator b̂ is found by minimizing e𝑇 e with respect to all elements of
b. This is corresponds to 𝜕e𝑇 e/𝜕b and is also called the gradient of e𝑇 e with respect to b.
Setting the gradient to zero leads to the following equations

X𝑇 Xb̂ = X𝑇 y (2.25)
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These equations are known as the least squares normal equations. Provided (X𝑇 X) can be
inverted, the unique solution for b̂ can be written as

b̂ = (X𝑇 X)−1X𝑇 y (2.26)

2.9 Example Dataset Continued

We use the original dataset shown in Table 2.1 to illustrate the estimation of the least squares
parameters using the matrix-vector notation. The matrix X and the vectors y, b and e are
defined as follows.

X = ⎡⎢⎢⎢⎢⎢⎣
1 1761 177. .. .. .1 184

⎤⎥⎥⎥⎥⎥⎦
, 𝑦 = ⎡⎢⎢⎢⎢⎢⎣

471463...541
⎤⎥⎥⎥⎥⎥⎦

, 𝑏 = [𝑏0𝑏1] , 𝑒 = ⎡⎢⎢⎢⎢⎢⎣
𝑒1𝑒2...𝑒10

⎤⎥⎥⎥⎥⎥⎦
The solution is obtained from equation Equation 2.26 for this we also need

𝑋𝑇 𝑋 = [ 10 17991799 323701] , (𝑋𝑇 𝑋)−1 = [531.529 −2.954−2.954 0.016 ] , 𝑋𝑇 𝑦 = [ 4952891393]
The solution vector b̂ contains the two components corresponding to the estimates of the two
unknown parameters.

b̂ = [𝑏̂0𝑏̂1] = [−1065.1158.673 ]
Comparing the above shown solutions to the results received earlier shows that for this example,
the solution using the matrix-vector notation are the same.
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