Applied Statistical Methods In Animal Science

Peter von Rohr

2024-02-19

Administration

- Course: 2 hours of lecture (2 V)
- ▶ Plan: 2 V \rightarrow 1 U + 1 V (i.e., 1 hour of lecture intersperced with time to do exercises)
- Exercises: Work on problems in R
- Material: course notes, slides, solution to exercises
- Exam: written, date: 27.05.2024 08:15 10:00

Objectives

The students

- > are familiar with the properties of **fixed linear effects models**
- are able to analyse simple data sets
- know why least squares cannot be used for genomic selection.
- know the statistical methods used in genomic selection, such

as

- BLUP-based approaches,
- Bayesian procedures and
- LASSO.
- are able to solve simple exercise problems using the statistical framework R.

Lecture Program

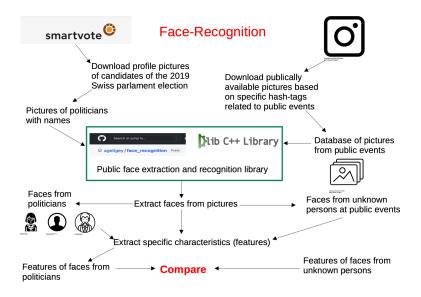
Week	Date	Торіс
1	19.02	Introduction
2	26.02	Linear Regression Models
3	04.03	Linear Fixed Effect Models
4	11.03	Model Selection
5	18.03	Pedigree BLUP
6	25.03	Variance Components
7	01.04	Easter Monday (Ostermontag)
8	08.04	GBLUP - Marker-Effects Models
9	15.04	GBLUP - Breeding Value Models
10	22.04	Lasso
11	29.04	SVM
12	06.05	Bayesian Approaches in Linear Mixed Effects Models
13	13.05	Test Exam
14	20.05	Pentcote Monday (Pfingstmontag)
15	27.05	Exam

Information

Website: https://charlotte-ngs.github.io/asmasss2024
 Topics for master thesis: will follow
 Exam: 27.05.2024 - 08:15 - 10:00

This Course

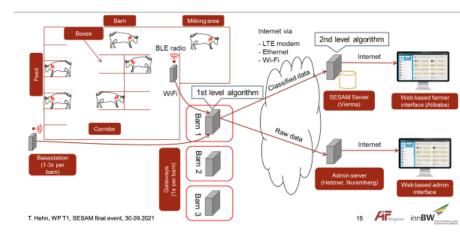
- Use dataset that is used to predict genomic breeding values and introduce four methods
- 1. Fixed Linear Effects Models Least Squares
- 2. GBLUP genomic version of BLUP
- 3. LASSO still fixed linear effects model, but modified parameter estimation
- 4. Bayesian approach to estimate unknown parameter


Significance

- Why is this important?
- Is this only relevant for animal breeding?
- What about the rest of animal science?
- General trend of collecting data has led to development of Big Data
- Examples
 - Politics: Elections, such as presidential campains in the US
 - Health care
 - Face recognition:

https://www.srf.ch/news/schweiz/automatischegesichtserkennung-so-einfach-ist-es-eineueberwachungsmaschine-zu-bauen

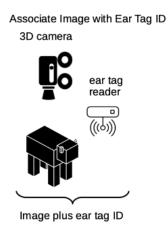
- Artificial Inteligence (AI): Google, ChatGPT (https://chat.openai.com), Wolfram Alpha (https://www.wolframalpha.com)
- Agriculture: Precision Farming
- Animal Science: Precision Livestock Farming

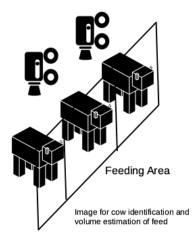

Face Recognition

Smart Farming

- Automated Milking Systems (AMS): Collection of data
- Sensor systems: SESAM
- CFIT: automated gathering of feed intake data

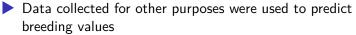
SESAM

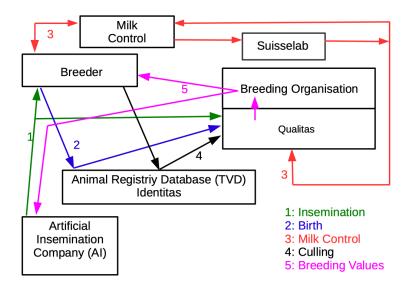

Use video image analysis based on time of flight (TOF) approach for



collection of feed intake data

See: https://youtu.be/XDC-C33HpEw?si=4da_MCjxf6gx9d2A


Cow Identification


Traditional Animal Breeding

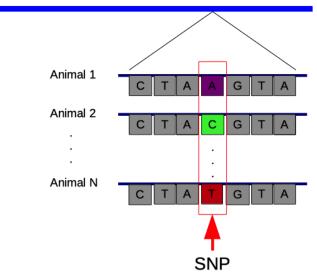
Predicted breeding values as side-product

Data Logistics

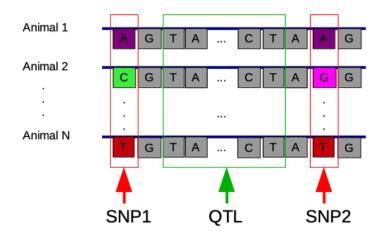
Genomic Selection

Same goal as in traditional breeding: Find animals with best genetic potential as parents of next generation

- New: use additional source of information
- **Genomic** information
 - spread accross whole genome
 - single nucleotide polymorphisms (SNP)
- Introduction:


"> Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829"

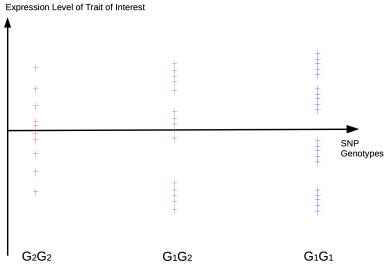
Popularisation:


"> L. R. Schaeffer. Strategy for applying genome-wide selection in dairy cat- tle. Journal of Animal Breeding and Genetics, 123(4):218-223, 2006. ISSN 09312668. doi: 10.1111/j.1439-0388.2006.00595.x."

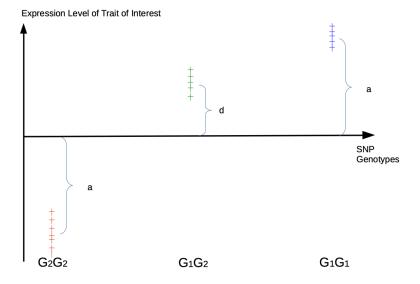
SNP

DNA Molecule

QTL


Linkage

- Flanking SNPs and QTL not independent passed on from parents to progeny
- Favorable QTL-allele linked with a given SNP-allele
- QTL is unknown, but use SNPs close to QTL as information for selection


Monogenic Model

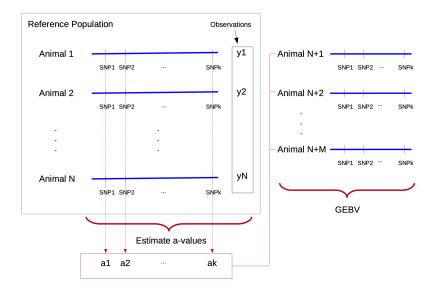
- Assume quantitative trait is influenced by one locus only
 Locus is bi-allelic → two alleles (G₁ and G₂) and three
 - genotypes
- Look at Distribution of trait values for three different genotypes

Distribution No Effect

Distribution With Effect

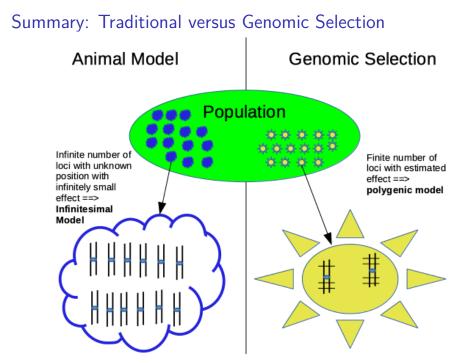
Breeding Value

- Definition: Two times deviation from large number of offspring from population mean
- Assume: Hardy-Weinberg equilibrium
- Compute population mean as expected value of genotypic values
- Compute expected genotypic value of offspring for each of the three parental genotypes
- Assume purely additive loci, hence d = 0


Genomic Breeding Value

- Take into account many loci
- Approximate unknown QTL with linked SNP
- Estimate a-effects from monogenic model
- Compute genomic breeding values for all loci based on a effects

Two Approaches


Two Step Procedure (used currently in Swiss Dairy Cattle)
 Single Step

Two Step

Single Step

Combine all information into one single BLUP-based analysis
 Problem: Determine covariance between animals with and without genomic information

