Fixed Linear Effects Models

Peter von Rohr

2024-03-18

Extension of Dataset on Body Weight

Animal	BC	Body Weight	Breed
1	176	471	Angus
2	177	463	Angus
3	178	481	Simmental
4	179	470	Angus
5	179	496	Simmental
6	180	491	Simmental
7	181	518	Limousin
8	182	511	Limousin
9	183	510	Limousin
10	184	541	Limousin

Include Breed into Model

- Breed has an influence on body weight
- Predictor variables must be numeric
- Breed must be converted to numeric code
- Assignment of codes to breeds is rather arbitrary

Breed Codes

Code	Breed
1	Angus
2	Limousin
3	Simmental

In R: Encoding based on alpha-numeric order of factor names

levels(as.factor(tbl_bw_bc_breed\$Breed))

[1] "Angus" "Limousin" "Simmental"

as.integer(as.factor(tbl_bw_bc_breed\$Breed))

[1] 1 1 3 1 3 3 2 2 2 2

Dataset with Breed Codes

Animal	Body Weight	Breed	Breed Code
1	471	Angus	1
2	463	Angus	1
3	481	Simmental	3
4	470	Angus	1
5	496	Simmental	3
6	491	Simmental	3
7	518	Limousin	2
8	511	Limousin	2
9	510	Limousin	2
10	541	Limousin	2

Modelling Effect of Breed

Simplification: "breed" is the only predictor, ignore BC
Take breed code of animal i as the predictor value x_i
Expected body weight (y_i) for animal i

$$E(y_i) = b_0 + b_1 x_i$$

Problems

Nothing wrong with previous model

But the following relations might give a hint to some problems

 $\left. \begin{array}{l} \text{Animal i of breed Angus} \\ \text{Animal j of breed Limousin} \\ \text{Animal k of breed Simmental} \end{array} \right\} \rightarrow \left\{ \begin{array}{l} E(y_i) = b_0 + b_1 * 1 \\ E(y_j) = b_0 + b_1 * 2 \\ E(y_k) = b_0 + b_1 * 3 \end{array} \right.$

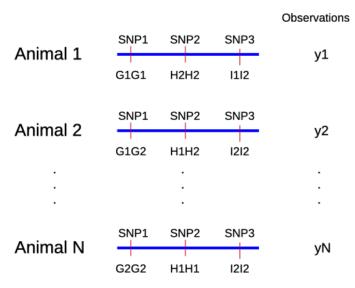
This means, for expected differences between body weights of animals of different breeds

$$\begin{split} E(y_j)-E(y_i) &= E(y_k)-E(y_j) = b_1\\ E(y_k)-E(y_i) &= 2*b_1 \end{split}$$

Consequences

- Allocation of numerical codes imposes relations between expected values
- Relations might be unreasonable
- Regression analysis only yields estimates for b₀ and b₁, effects of other breeds are determined
- Conclusion: regression on numerical codes of discrete variables are in most cases unreasonable
- Exception: Estimation of marker effects

Linear Regression Analysis for Genomic Data



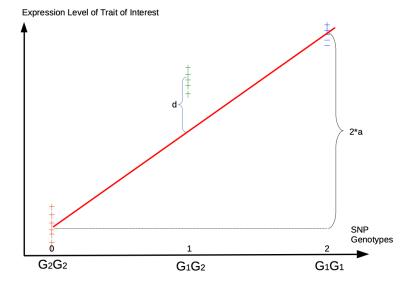
Marker Effect Estimation

- Assume: marker and QTL are very close, such they can no longer be distinguished
- Fit regression of observations (y) on marker genotypes of locus G
- Assume G_1 is the allele with a positive effect on observed trait
- Use the following encoding of marker genotypes to numeric values

Genotype	Code
$\overline{G_1G_1}$	2
G_1G_2	1
$G_2 G_2$	0

 \rightarrow Biological meaning of genotype code: count number of G_1 alleles

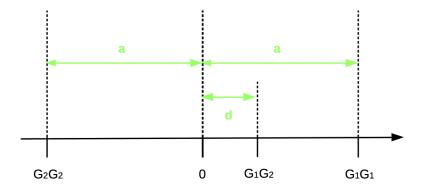
Genomic Regression



Model Fit

- \blacktriangleright Take only homozygous genotypes G_1G_1 and G_2G_2 from dataset
- Why only homozygotes? Look at extreme values for d with over- and under-dominance
- Fit regression line and compute marker effect a
- Shift x- axis, such that homozygotes have values -a and a
- Compute d as deviation of heterozygotes from 0

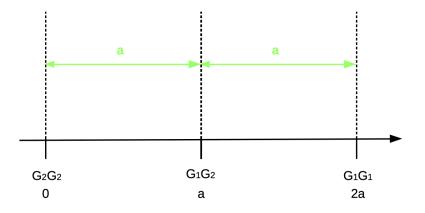
Single Locus Model



 \blacktriangleright Assuming $d=0 \rightarrow$ genotypic value of G_1G_2 between homozygotes

Shifting origin to genotypic value of G_2G_2

Modified Single Locus Model



- Transformation of regression on genotypes to regression on number of "positive" alleles (G₁)
- Relationships imposed by regression are meaningful

Relationships

Expected value for observation for a given genotype

$$\begin{split} E(G_2G_2) &= b_0 + 0 * a_G \\ E(G_1G_2) &= b_0 + 1 * a_G \\ E(G_1G_1) &= b_0 + 2 * a_G \end{split}$$

$$\begin{split} E(G_1G_2) - E(G_2G_2) &= E(G_1G_1) - E(G_1G_2) = a_G\\ E(G_1G_1) - E(G_2G_2) &= 2a_G \end{split}$$

Example Dataset

Exercise 5, Problem 1

Animal	SNP G	SNP H	Observation
1	G_1G_1	H_1H_2	510
2	$G_1 G_2$	H_1H_1	528
3	$G_1 G_2$	H_1H_1	505
4	G_1G_1	H_2H_2	539
5	G_1G_1	H_1H_1	530
6	G_1G_2	H_1H_2	489
7	G_1G_2	H_2H_2	486
8	G_2G_2	H_1H_1	485
9	G_1G_2	H_2H_2	478
10	G_2G_2	H_1H_2	479

Regression On Dummy Variables

Cases that are not like genomic data

- Example with breeds
- Discrete independent variables are called Factors (e.g. Breed)
- Different values that a factor can take are called Levels
- Levels for our example factor Breed are: Angus, Limousin and Simmental

Levels To Independent Variables

Use "separate" x-variable for each level, hence each of the breeds

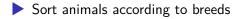
Breed	Independent Variable
Angus Limousin Simmental	$egin{array}{c} x_1 \ x_2 \ x_3 \end{array}$

Model

▶ Instead of
$$E(y_i) = b_0 + b_1 * x_i$$

▶ Observation y_{ij} stands for birth weight for animal j in breed i

$$\begin{split} E(y_{11}) &= b_0 + b_1 * 1 + b_2 * 0 + b_3 * 0 \\ E(y_{12)} &= b_0 + b_1 * 1 + b_2 * 0 + b_3 * 0 \\ & \cdots = \cdots \\ E(y_{33}) &= b_0 + b_1 * 0 + b_2 * 0 + b_3 * 1 \end{split}$$



Sorted Data

Animal	Body Weight	Breed
1	471	Angus
2	463	Angus
4	470	Angus
7	518	Limousin
8	511	Limousin
9	510	Limousin
10	541	Limousin
3	481	Simmental
5	496	Simmental
6	491	Simmental

Matrix - Vector Notation

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$

with

vectors y and e defined as in linear regression
vector b contains intercept b₀ and separate effects for each breed

$$b = \begin{bmatrix} b_0 \\ b_{Angus} \\ b_{Limousin} \\ b_{Simmental} \end{bmatrix}$$

$\mathsf{Matrix}\; X$

Matrix X is an incidence matrix linking factor levels to observations

$$X = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

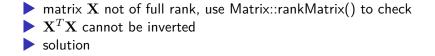
Models Not Of Full Rank

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$

Least squares normal equations

$$\mathbf{X}^T \mathbf{X} \mathbf{b}^{(0)} = \mathbf{X}^T \mathbf{y}$$

Solutions



$$\mathbf{b}^{(0)} = (\mathbf{X}^T \mathbf{X})^- \mathbf{X}^T \mathbf{y}$$

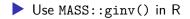
where $(\mathbf{X}^T \mathbf{X})^-$ stands for a generalized inverse

Generalized Inverse

matrix G is a generalized inverse of matrix A, if

AGA = A

$$(\mathbf{AGA})^T = \mathbf{A}^T$$



Systems of Equations

For a consistent system of equations

$$Ab = r$$

$$b = Gr$$

if G is a generalized inverse of A.

b = GrAb = AGrAb = AGAb

Non Uniqueness

Solution
$$b = Gr$$
 is not unique

$$\tilde{\mathbf{b}} = \mathbf{G}\mathbf{r} + (\mathbf{G}\mathbf{A} - \mathbf{I})\mathbf{z}$$

yields a different solution for an arbitrary vector $\ensuremath{\mathbf{z}}$

$$\mathbf{A}\tilde{\mathbf{b}} = \mathbf{A}\mathbf{G}\mathbf{r} + (\mathbf{A}\mathbf{G}\mathbf{A} - \mathbf{A})\mathbf{z}$$

Least Squares Normal Equations

lnstead of
$$Ax = y$$
, we have

$$\mathbf{X}^T \mathbf{X} \mathbf{b}^{(0)} = \mathbf{X}^T \mathbf{y}$$

$$\blacktriangleright$$
 With generalized inverse G of $\mathbf{X}^T \mathbf{X}$

$$\mathbf{b}^{(0)} = \mathbf{G} \mathbf{X}^T \mathbf{y}$$

is a solution to the least squares normal equations

But $\mathbf{b}^{(0)}$ is not an estimator for the parameter $\mathbf{b},$ because

it is not unique
Expectation
$$E(\mathbf{b}^{(0)}) = E(\mathbf{G}\mathbf{X}^T\mathbf{y}) = \mathbf{G}\mathbf{X}^T\mathbf{X}\mathbf{b} \neq \mathbf{b}$$

 \rightarrow Require different concept: estimable functions