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Extension of Dataset on Body Weight

Animal BC Body Weight Breed
1 176 471 Angus
2 177 463 Angus
3 178 481 Simmental
4 179 470 Angus
5 179 496 Simmental
6 180 491 Simmental
7 181 518 Limousin
8 182 511 Limousin
9 183 510 Limousin

10 184 541 Limousin



Include Breed into Model

▶ Breed has an influence on body weight
▶ Predictor variables must be numeric
▶ Breed must be converted to numeric code
▶ Assignment of codes to breeds is rather arbitrary



Breed Codes
Code Breed

1 Angus
2 Limousin
3 Simmental

In R: Encoding based on alpha-numeric order of factor names

levels(as.factor(tbl_bw_bc_breed$Breed))

[1] "Angus" "Limousin" "Simmental"

as.integer(as.factor(tbl_bw_bc_breed$Breed))

[1] 1 1 3 1 3 3 2 2 2 2



Dataset with Breed Codes

Animal Body Weight Breed Breed Code
1 471 Angus 1
2 463 Angus 1
3 481 Simmental 3
4 470 Angus 1
5 496 Simmental 3
6 491 Simmental 3
7 518 Limousin 2
8 511 Limousin 2
9 510 Limousin 2

10 541 Limousin 2



Modelling Effect of Breed

▶ Simplification: “breed” is the only predictor, ignore BC
▶ Take breed code of animal 𝑖 as the predictor value 𝑥𝑖
▶ Expected body weight (𝑦𝑖) for animal 𝑖

𝐸(𝑦𝑖) = 𝑏0 + 𝑏1𝑥𝑖



Problems

▶ Nothing wrong with previous model
▶ But the following relations might give a hint to some problems

Animal i of breed Angus
Animal j of breed Limousin
Animal k of breed Simmental

⎫}
⎬}⎭

→
⎧{
⎨{⎩

𝐸(𝑦𝑖) = 𝑏0 + 𝑏1 ∗ 1
𝐸(𝑦𝑗) = 𝑏0 + 𝑏1 ∗ 2
𝐸(𝑦𝑘) = 𝑏0 + 𝑏1 ∗ 3

This means, for expected differences between body weights of
animals of different breeds

𝐸(𝑦𝑗) − 𝐸(𝑦𝑖) = 𝐸(𝑦𝑘) − 𝐸(𝑦𝑗) = 𝑏1
𝐸(𝑦𝑘) − 𝐸(𝑦𝑖) = 2 ∗ 𝑏1



Consequences

▶ Allocation of numerical codes imposes relations between
expected values

▶ Relations might be unreasonable
▶ Regression analysis only yields estimates for 𝑏0 and 𝑏1, effects

of other breeds are determined
▶ Conclusion: regression on numerical codes of discrete

variables are in most cases unreasonable
▶ Exception: Estimation of marker effects



Linear Regression Analysis for Genomic Data



Marker Effect Estimation
▶ Assume: marker and QTL are very close, such they can no

longer be distinguished
▶ Fit regression of observations (y) on marker genotypes of

locus 𝐺
▶ Assume 𝐺1 is the allele with a positive effect on observed trait
▶ Use the following encoding of marker genotypes to numeric

values

Genotype Code
𝐺1𝐺1 2
𝐺1𝐺2 1
𝐺2𝐺2 0

→ Biological meaning of genotype code: count number of 𝐺1
alleles



Genomic Regression



Model Fit

▶ Take only homozygous genotypes 𝐺1𝐺1 and 𝐺2𝐺2 from
dataset

▶ Why only homozygotes? Look at extreme values for 𝑑 with
over- and under-dominance

▶ Fit regression line and compute marker effect 𝑎
▶ Shift 𝑥- axis, such that homozygotes have values −𝑎 and 𝑎
▶ Compute 𝑑 as deviation of heterozygotes from 0



Single Locus Model

▶ Assuming 𝑑 = 0 → genotypic value of 𝐺1𝐺2 between
homozygotes

▶ Shifting origin to genotypic value of 𝐺2𝐺2



Modified Single Locus Model

▶ Transformation of regression on genotypes to regression on
number of “positive” alleles (𝐺1)

▶ Relationships imposed by regression are meaningful



Relationships

▶ Expected value for observation for a given genotype

𝐸(𝐺2𝐺2) = 𝑏0 + 0 ∗ 𝑎𝐺
𝐸(𝐺1𝐺2) = 𝑏0 + 1 ∗ 𝑎𝐺
𝐸(𝐺1𝐺1) = 𝑏0 + 2 ∗ 𝑎𝐺

▶ Differences

𝐸(𝐺1𝐺2) − 𝐸(𝐺2𝐺2) = 𝐸(𝐺1𝐺1) − 𝐸(𝐺1𝐺2) = 𝑎𝐺

𝐸(𝐺1𝐺1) − 𝐸(𝐺2𝐺2) = 2𝑎𝐺



Example Dataset

▶ Exercise 5, Problem 1

Animal SNP G SNP H Observation
1 𝐺1𝐺1 𝐻1𝐻2 510
2 𝐺1𝐺2 𝐻1𝐻1 528
3 𝐺1𝐺2 𝐻1𝐻1 505
4 𝐺1𝐺1 𝐻2𝐻2 539
5 𝐺1𝐺1 𝐻1𝐻1 530
6 𝐺1𝐺2 𝐻1𝐻2 489
7 𝐺1𝐺2 𝐻2𝐻2 486
8 𝐺2𝐺2 𝐻1𝐻1 485
9 𝐺1𝐺2 𝐻2𝐻2 478

10 𝐺2𝐺2 𝐻1𝐻2 479



Regression On Dummy Variables

▶ Cases that are not like genomic data
▶ Example with breeds
▶ Discrete independent variables are called Factors (e.g. Breed)
▶ Different values that a factor can take are called Levels
▶ Levels for our example factor Breed are: Angus, Limousin

and Simmental



Levels To Independent Variables

Use “separate” 𝑥-variable for each level, hence each of the breeds

Breed Independent Variable
Angus 𝑥1
Limousin 𝑥2
Simmental 𝑥3



Model

▶ Instead of 𝐸(𝑦𝑖) = 𝑏0 + 𝑏1 ∗ 𝑥𝑖
▶ Observation 𝑦𝑖𝑗 stands for birth weight for animal 𝑗 in breed 𝑖

𝐸(𝑦11) = 𝑏0 + 𝑏1 ∗ 1 + 𝑏2 ∗ 0 + 𝑏3 ∗ 0
𝐸(𝑦12) = 𝑏0 + 𝑏1 ∗ 1 + 𝑏2 ∗ 0 + 𝑏3 ∗ 0

⋯ = ⋯
𝐸(𝑦33) = 𝑏0 + 𝑏1 ∗ 0 + 𝑏2 ∗ 0 + 𝑏3 ∗ 1

▶ Sort animals according to breeds



Sorted Data

Animal Body Weight Breed
1 471 Angus
2 463 Angus
4 470 Angus
7 518 Limousin
8 511 Limousin
9 510 Limousin

10 541 Limousin
3 481 Simmental
5 496 Simmental
6 491 Simmental



Matrix - Vector Notation

y = Xb + e

with

▶ vectors 𝑦 and 𝑒 defined as in linear regression
▶ vector 𝑏 contains intercept 𝑏0 and separate effects for each

breed

𝑏 =
⎡
⎢⎢
⎣

𝑏0
𝑏𝐴𝑛𝑔𝑢𝑠

𝑏𝐿𝑖𝑚𝑜𝑢𝑠𝑖𝑛
𝑏𝑆𝑖𝑚𝑚𝑒𝑛𝑡𝑎𝑙

⎤
⎥⎥
⎦



Matrix 𝑋

▶ Matrix 𝑋 is an incidence matrix linking factor levels to
observations

𝑋 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 0 0
1 1 0 0
1 1 0 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 0 1
1 0 0 1
1 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦



Models Not Of Full Rank

▶ Model

y = Xb + e

▶ Least squares normal equations

X𝑇 Xb(0) = X𝑇 y



Solutions

▶ matrix X not of full rank, use Matrix::rankMatrix() to check
▶ X𝑇 X cannot be inverted
▶ solution

b(0) = (X𝑇 X)−X𝑇 y

where (X𝑇 X)− stands for a generalized inverse



Generalized Inverse

▶ matrix G is a generalized inverse of matrix A, if

AGA = A

(AGA)𝑇 = A𝑇

▶ Use MASS::ginv() in R



Systems of Equations

▶ For a consistent system of equations

𝐴𝑏 = 𝑟

▶ Solution

𝑏 = 𝐺𝑟
if 𝐺 is a generalized inverse of 𝐴.

𝑏 = 𝐺𝑟
𝐴𝑏 = 𝐴𝐺𝑟

𝐴𝑏 = 𝐴𝐺𝐴𝑏



Non Uniqueness

▶ Solution 𝑏 = 𝐺𝑟 is not unique

b̃ = Gr + (GA − I)z
yields a different solution for an arbitrary vector z

Ab̃ = AGr + (AGA − A)z



Least Squares Normal Equations

▶ Instead of 𝐴𝑥 = 𝑦, we have

X𝑇 Xb(0) = X𝑇 y

▶ With generalized inverse G of X𝑇 X

b(0) = GX𝑇 y

is a solution to the least squares normal equations



Parameter Estimator

But b(0) is not an estimator for the parameter b, because

▶ it is not unique
▶ Expectation 𝐸(b(0)) = 𝐸(GX𝑇 y) = GX𝑇 Xb ≠ b

→ Require different concept: estimable functions


