
Chapter 2

Linear Regression

2.1 Introduction
This chapter is based on the book [Searle, 1971] and on the course notes
[Bühlmann and Mächler, 2016]. Regression analysis is used to assess rela-
tionships between a given variable and other measurements or observations
on the same animal. The relationships between the variable and the other
characteristics of the animal are estimated based on observed data.

2.2 Example
A classical example of a regression analysis in animal science is the relationship
between body weight and breast circumference in cattle. This example has
a practical application because the results of the regression analysis of body
weight on breast circumference can be used for a measuring band. With such
a measuring band the breast circumference of an animal is measured. On the
back side of the band, the estimated body weight can directly be determined.
At this point the question is how is it possible to determine the relationship
between the values of breast circumference in centimeters and body weight in
kilograms. The answer to this question can be given by a regression analysis.
The most important pre-requisites for doing a regression analysis is to have a
dataset. For our example, Table 2.1 shows such a dataset which can be used for
a regression analysis.

Table 2.1: Breast Circumference and Body Weight for 10 Animals

Animal Breast Circumference Body Weight
1 176 471

13
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2 177 463
3 178 481
4 179 470
5 179 496
6 180 491
7 181 518
8 182 511
9 183 510

10 184 541

The dataset in Table 2.1 contains measurements of body weight and breast
circumference for 10 animals. Figure 2.1 is a graphical representation of our
example dataset.
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Figure 2.1: Breast Circumference and Body Weight

The diagram in Figure 2.1 shows on the x-axis the breast circumference in cm
and on the y-axis the body weight in kg. Each of the blue dots correspond to
an observation of one animal in the dataset. A diagram like the one shown in
Figure 2.1 is also called a dot plot. From a first visual inspection of the dot
plot for our dataset, we can see that there is a tendency that larger values of
breast circumference of animals are related to heavier animals. The relationship
is not deterministic that means there are exceptions which do not follow the
rule of this relationship. One example of an exception are animals 1 and 2.
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Animal 2 has a larger breast circumference value compared to animal 1, but
animal 2 has a lower body weight compared to animal 1. But despite such
exceptions, we can still observe that on average there is a relationship between
breast circumference and body weight. Furthermore, the apparent relationship
between breast circumference and body weight seams to be the same for low
and high values of breast circumference. Based on this last fact, we can say
that the relationship between breast circumference and body weight is linear.

Non-Linear Functions

Figure 2.2: Examples of Non-Linear Functions

Figure 2.2 shows two examples of non-linear functions. Both examples show
that the relationship between the shown variables 𝑥 and 𝑦 is not the same over
the shown range of values. Hence by inspecting the diagram of the two variables
breast circumference and body weight of our example in Figure 2.1, we can say
that the relationship between the variables of our example dataset show a linear
relationship.

2.3 Regression Model
With the regression model we want to find a mathematical formulation to de-
scribe and to quantify the relationship between the two variables from our ex-
ample, breast circumference and body weight. One possibility to find this re-
lationship is to take an animal with 𝑥 cm of breast circumference. Then the
question is what would be the expected value for its body weight 𝑦 in kg. Under
the assumption of a linear relationship between the variables from our example,
the expected value 𝐸(𝑦) for the body weight 𝑦 can be written as𝐸(𝑦) = 𝑏0 + 𝑏1 ∗ 𝑥 (2.1)
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The above reasoning on how the variables are related is often referred to as
model building. The model shown in (2.1) is called a linear model, because the
expected body weight (𝐸(𝑦)) is a linear function of the unknown parameters𝑏0 and 𝑏1. The number of possible models between two variables 𝑥 and 𝑦 is
infinite. And therefore the process of model building is difficult and requires
some experience. But in general, we can say that a simpler model with fewer
unknown parameters is always preferable over a more complex model as long as
the simpler model is able to capture the most important aspects of a relationship
between two variables.

2.4 Observations
For an animal with a breast circumference of 𝑥 cm, the body weight (𝑦) will not
exactly be 𝑏0 + 𝑏1 ∗ 𝑥. It has to be noted here that the values for 𝑏0 and 𝑏1 will
be the same for all animals. The fact of the discrepancy between the recorded
body weights (𝑦) and the output of the model is taken into account by writing𝐸(𝑦) instead of 𝑦 in the model shown in equation (2.1). For a given observed
body weight 𝑦𝑖 of animal 𝑖 with a breast circumference of 𝑥𝑖, we can write

𝐸(𝑦𝑖) = 𝑏0 + 𝑏1 ∗ 𝑥𝑖 (2.2)

where 𝐸(𝑦𝑖) is not the same as 𝑦𝑖. The difference 𝑦𝑖 − 𝐸(𝑦𝑖) represents the
difference between the observed body weight from its expected value 𝐸(𝑦𝑖) and
is written as

𝑒𝑖 = 𝑦𝑖 − 𝐸(𝑦𝑖) = 𝑦𝑖 − 𝑏0 − 𝑏1 ∗ 𝑥𝑖 (2.3)

Hence for the body weight 𝑦𝑖 of animal 𝑖, we can write

𝑦𝑖 = 𝑏0 + 𝑏1 ∗ 𝑥𝑖 + 𝑒𝑖 (2.4)

Equations (2.2), (2.3) and (2.4) apply to all observations 𝑦1, 𝑦2, … , 𝑦10, of our
example dataset shown in Table 2.1. The 𝑒𝑖 terms for all observations might take
many different values. They include potential measurement errors or deficiencies
of the model itself. Due to the described properties of 𝑒𝑖’s, they are considered to
be random variables and are usually called random errors or random residuals.

To complete the description of our model in terms of equation (2.4), further
characteristics of the random errors (𝑒𝑖) must be specified. These characteristics
consist of

• the expected value 𝐸(𝑒𝑖) of 𝑒𝑖 and
• the variance 𝑣𝑎𝑟(𝑒𝑖) of 𝑒𝑖.
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Useful specifications are that the expected value 𝐸(𝑒𝑖) is zero and all covariances
between any pair of 𝑒𝑖 and 𝑒𝑗 with 𝑖 ≠ 𝑗 are also zero. Then the variance𝑣𝑎𝑟(𝑒𝑖) is assumed to be a constant for all 𝑖 and is represented by the symbol𝜎2. Summarizing all the proposed properties in a mathematical notation, we
obtain

𝐸(𝑒𝑖) = 0 (2.5)

which is obtained from the definition of 𝑒𝑖 given in (2.3). The variance 𝑣𝑎𝑟(𝑒𝑖)𝑣𝑎𝑟(𝑒𝑖) = 𝐸 [𝑒𝑖 − 𝐸(𝑒𝑖)]2 = 𝐸(𝑒2𝑖 ) = 𝜎2 (2.6)

and

𝑐𝑜𝑣(𝑒𝑖, 𝑒𝑗) = 𝐸 [𝑒𝑖 − 𝐸(𝑒𝑖)] [𝑒𝑗 − 𝐸(𝑒𝑗)] = 𝐸(𝑒𝑖𝑒𝑗) = 0 (2.7)

Equations (2.2) - (2.7) give a constitutional description of the linear model that
we have designed so far for our example dataset. These properties form the
basis for the procedure used to estimated the unknown parameters 𝑏0 and 𝑏1.

2.5 Parameter Estimation
There are several methods to estimate the unknown parameters 𝑏0 and 𝑏1 of
the proposed linear model. The most frequently used method which is also
implemented in the R-function lm() is called least squares.

Least squares estimation is based on the idea of minimizing the sum of the
squared deviations of the observations 𝑦𝑖 from their expected values. This sum
can be written as

e𝑇 e = 𝑁∑𝑖=1 𝑒2𝑖 = 𝑁∑𝑖=1 [𝑦𝑖 − 𝐸(𝑒𝑖)]2 = 𝑁∑𝑖=1 [𝑦𝑖 − 𝑏0 − 𝑏1 ∗ 𝑥𝑖]2 (2.8)

where e𝑇 = [ 𝑒1 𝑒2 … 𝑒𝑁 ] is the transpose of the vector e of length 𝑁
containing all the 𝑒𝑖 values and 𝑁 stands for the number of observations.

Although 𝑏0 and 𝑏1 are fixed (but unknown) values, we treat them for a moment
like mathematical variables. The reason for this changed view is that we want to
find the values for 𝑏0 and 𝑏1 that minimize the expression in (2.8). The resulting
values from the minimization of (2.8) will be represented by the symbols ̂𝑏0 and̂𝑏1 and they will be called the least squares estimators of 𝑏0 and 𝑏1.
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Minimization of (2.8) is done by taking partial derivatives with respect to both
unknowns 𝑏0 and 𝑏1 and setting both derivatives to zero1. This yields two
equations from which solutions called ̂𝑏0 and ̂𝑏1 can be computed.

𝜕e𝑇 e𝜕𝑏0 = −2 𝑁∑𝑖=1 [𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖]= −2 [ 𝑁∑𝑖=1 𝑦𝑖 − 𝑁𝑏0 − 𝑏1 𝑁∑𝑖=1 𝑥𝑖] (2.9)

𝜕e𝑇 e𝜕𝑏1 = −2 𝑁∑𝑖=1 𝑥𝑖 [𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖]= −2 [ 𝑁∑𝑖=1 𝑥𝑖𝑦𝑖 − 𝑏0 𝑁∑𝑖=1 𝑥𝑖 − 𝑏1 𝑁∑𝑖=1 𝑥2𝑖 ] (2.10)

Setting both expression in (2.9) and (2.10) to zero and writing them in terms
of ̂𝑏0 and ̂𝑏1 gives 𝑁 ̂𝑏0 + ̂𝑏1𝑥. = 𝑦. (2.11)

and ̂𝑏0𝑥. + ̂𝑏1(𝑥2). = (𝑥𝑦). (2.12)

using the dot notation for the following sums 𝑥. = ∑𝑁𝑖=1 𝑥𝑖, 𝑦. = ∑𝑁𝑖=1 𝑦𝑖,(𝑥2). = ∑𝑁𝑖=1 𝑥2𝑖 and (𝑥𝑦). = ∑𝑁𝑖=1 𝑥𝑖𝑦𝑖. With the bar notation for the means,
we can further write ̄𝑥. = 𝑥.𝑁 (2.13)

and ̄𝑦. = 𝑦.𝑁 (2.14)

The solutions in (2.15) and (2.16) can then be written as
1The verification of higher order derivative to confirm that the obtained extreme value is

a minimum is not done here.
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̂𝑏0 = ̄𝑦. − ̂𝑏1 ̄𝑥. (2.15)

and ̂𝑏1 = (𝑥𝑦). − 𝑁 ̄𝑥. ̄𝑦.(𝑥2). − 𝑁 ̄𝑥.2 (2.16)

2.6 Estimates for Example Dataset
The estimates as shown in (2.15) and (2.16) are computed for our example
dataset. We start by computing all the components of the formulas for the
estimators, then we plug those components in and get the results.𝑁 = 10, ̄𝑥. = 179.9, ̄𝑦. = 495.2, (𝑥𝑦). = 891393, (𝑥2). = 323701

̂𝑏1 = 891393 − 10 ∗ 179.9 ∗ 495.2323701 − 10 ∗ 179.92 = 8.673 (2.17)

̂𝑏0 = 495.2 − 8.6732348 ∗ 179.9 = −1065.115 (2.18)

2.7 Obtain Parameter Estimates in R
As already mentioned, the same type of computation as shown in Section 2.6
is also implemented in the R-function lm(). In what follows, we show how the
estimates of the linear regression model are obtained using lm(). An important
pre-requisite for using the function lm() is that the dataset is assigned to a
dataframe. Here we assume that we have a dataframe named tbl_reg that
contains our dataset. Then the parameter estimates are obtained using the
following statements in R.
lm_bw_bc <- lm(`Body Weight` ~ `Breast Circumference`, data = tbl_reg)
summary(lm_bw_bc)

##
## Call:
## lm(formula = `Body Weight` ~ `Breast Circumference`, data = tbl_reg)
##
## Residuals:
## Min 1Q Median 3Q Max
## -17.3941 -6.5525 -0.0673 9.3707 13.2594
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
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## (Intercept) -1065.115 255.483 -4.169 0.003126 **
## `Breast Circumference` 8.673 1.420 6.108 0.000287 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 11.08 on 8 degrees of freedom
## Multiple R-squared: 0.8234, Adjusted R-squared: 0.8014
## F-statistic: 37.31 on 1 and 8 DF, p-value: 0.000287

The output of the summary function shows a lot of information about the data
and the model. Under the section Coefficients there are two entries

• (Intercept) corresponding to our 𝑏0 and
• Breast Circumference corresponding to our 𝑏1.

The values in the first column entitled Estimate correspond to the values that
we have computed in the previous section.

2.8 The General Case
Suppose that in the study on body weight and breast circumference, we have
an additional observation for each animal consisting of the height of the animal.
The new extended data set is shown in Table 2.2.

Table 2.2: Extended Dataset of Body Weight for 10 Animals

Animal Breast Circumference Body Weight Height
1 176 471 161
2 177 463 121
3 178 481 157
4 179 470 165
5 179 496 136
6 180 491 123
7 181 518 163
8 182 511 149
9 183 510 143

10 184 541 130

The model developed so far is not extended to be𝐸(𝑦) = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 (2.19)

where 𝑥1 represents the breast circumference in cm, and 𝑥2 stands for the height
of the animal in cm. Thus for animal 𝑖 with a breast circumference of 𝑥𝑖1 cm
and a height of 𝑥𝑖2 the body weight 𝑦𝑖 can be written as



2.8. THE GENERAL CASE 21

𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + 𝑒𝑖 (2.20)

As the number of 𝑥 variables increase, the equations such as shown in (2.20) are
getting longer and they are getting tedious to handle. This problem is solved
by a change of notation. Let us define the matrix X and the vectors y, e and b
as follows.

X = ⎡⎢⎢⎢⎢⎣
𝑥10 𝑥11 𝑥12𝑥20 𝑥21 𝑥22. . .. . .. . .𝑥𝑁0 𝑥𝑁1 𝑥𝑁2

⎤⎥⎥⎥⎥⎦ , y = ⎡⎢⎢⎢⎢⎣
𝑦1𝑦2...𝑦𝑁

⎤⎥⎥⎥⎥⎦ , e = ⎡⎢⎢⎢⎢⎣
𝑒1𝑒2...𝑒𝑁

⎤⎥⎥⎥⎥⎦ and b = ⎡⎢⎣𝑏0𝑏1𝑏2⎤⎥⎦
Because all equations contain the term 𝑏0, the first column of matrix X consists
of all ones. Hence, 𝑥10 = 𝑥20 = … = 𝑥𝑁0 = 1. The complete set of equations
for all animals in our extended dataset represented by (2.20) is

y = Xb + e, with 𝐸(y) = Xb (2.21)

The big advantage of the matrix-vector notation is that equation (2.21) is invari-
ant to the number of 𝑥-variables. That means no matter how many 𝑥-variables
we include in our dataset, the linear regression model can always be written as
shown in equation (2.21). The only thing that changes are the definitions of X
and b. In the general case with 𝑘 variables

X = ⎡⎢⎢⎢⎢⎣
𝑥10 𝑥11 . 𝑥1𝑘𝑥20 𝑥21 . 𝑥2𝑘. . . .. . . .. . . .𝑥𝑁0 𝑥𝑁1 . 𝑥𝑁𝑘

⎤⎥⎥⎥⎥⎦ , b = ⎡⎢⎢⎢⎣
𝑏0𝑏1..𝑏𝑘

⎤⎥⎥⎥⎦
The topic of parameter estimation can also be shown using matrix-vector nota-
tion. The only restriction that we are currently imposing is that the number of𝑥-variables 𝑘 is smaller than the number of observations 𝑁 .

The model specification is only complete, if the properties of the vector e of
random residuals is defined. In accordance with equations (2.5), (2.6) and (2.7),
we can write

𝐸(e) = 0 (2.22)
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where 𝐸(e) stands for the vector of length 𝑁 containing the expected values of
all random residuals and 0 is a vector of 𝑁 zeros and𝑣𝑎𝑟(e) = 𝐸 [e − 𝐸(e)] [e − 𝐸(e)]𝑇 = 𝐸(ee𝑇 ) = 𝜎2I𝑁 (2.23)

where 𝑣𝑎𝑟(e) is the variance-covariance matrix between all random residuals
and I𝑁 is the 𝑁 × 𝑁 identity matrix.
Derivation of the least squares estimator of b follows the same principles as
shown in equations (2.9) - (2.16). The sum of squares of the deviations of the
observations from their expected values using 𝐸(e) = 0 and hence 𝐸(y) = Xb,
is

e𝑇 e = [y − 𝐸(y)]𝑇 [y − 𝐸(y)]= [y − Xb]𝑇 [y − Xb]= y𝑇 y − 2b𝑇 X𝑇 y + b𝑇 X𝑇 Xb (2.24)

The least squares estimator b̂ is found by minimizing e𝑇 e with respect to all
elements of b. This is corresponds to 𝜕e𝑇 e/𝜕b and is also called the gradient
of e𝑇 e with respect to b. Setting the gradient to zero leads to the following
equations

X𝑇 Xb̂ = X𝑇 y (2.25)

These equations are known as the least squares normal equations. Provided(X𝑇 X) can be inverted, the unique solution for b̂ can be written as

b̂ = (X𝑇 X)−1X𝑇 y (2.26)

2.9 Example Dataset Continued
We use the original dataset shown in Table 2.1 to illustrate the estimation of
the least squares parameters using the matrix-vector notation. The matrix X
and the vectors y, b and e are defined as follows.

X = ⎡⎢⎢⎢⎢⎣
1 1761 177. .. .. .1 184

⎤⎥⎥⎥⎥⎦ , 𝑦 = ⎡⎢⎢⎢⎢⎣
471463...541

⎤⎥⎥⎥⎥⎦ , 𝑏 = [𝑏0𝑏1] , 𝑒 = ⎡⎢⎢⎢⎢⎣
𝑒1𝑒2...𝑒10

⎤⎥⎥⎥⎥⎦
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The solution is obtained from equation (2.26) for this we also need

𝑋𝑇 𝑋 = [ 10 17991799 323701] , (𝑋𝑇 𝑋)−1 = [531.529 −2.954−2.954 0.016 ] , 𝑋𝑇 𝑦 = [ 4952891393]
The solution vector b̂ contains the two components corresponding to the esti-
mates of the two unknown parameters.

b̂ = [ ̂𝑏0̂𝑏1] = [−1065.1158.673 ]
Comparing the above shown solutions to the results received earlier shows that
for this example, the solution using the matrix-vector notation are the same.
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