
Chapter 3

Fixed Linear Effects Models

3.1 Resources
Similarly to chapter 2, this chapter on fixed linear effects models (FLEM)
is based on the work of [Bühlmann and Mächler, 2016] and on the book [Searle,
1971].

3.2 Introduction
In chapter 2, we saw how linear regression analysis was used to describe and
to quantify the relationship between a response variable and between one or
more predictor variables. The type of analysis shown in chapter 2 is called
“regression analysis, because the response and the predictors are all continuous
variables. This means that the values of the variables in the dataset are all
floating-point numbers. For datasets where predictor variables are discrete, the
model is referred to as fixed linear effects model.
The reason why fixed linear effects models must be treated differently from re-
gression models can best be seen by looking at an extension of our example
dataset on body weight of some animals. Let us assume that besides the predic-
tors that we have used so far, we have the breed of the animal as an additional
information. Animals of different breeds have different body weights, hence we
expect that the breed of the animal has an effect on its body weight. The ques-
tion is how is it possible to integrate the breed of the animal into a model that
describes and quantifies the different influence factors on body weight. First,
we have a look at the extended dataset.

Table 3.1: Extended Dataset on Body Weight for 10 Animals
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Animal Breast Circumference Body Weight BCS HEI Breed
1 176 471 5.0 161 Angus
2 177 463 4.2 121 Angus
3 178 481 4.9 157 Simmental
4 179 470 3.0 165 Angus
5 179 496 6.8 136 Simmental
6 180 491 4.9 123 Simmental
7 181 518 4.4 163 Limousin
8 182 511 4.4 149 Limousin
9 183 510 3.5 143 Limousin

10 184 541 4.7 130 Limousin

The extension in our dataset consists of the breed for each animal. With this
extension, the immediate question of how to measure “breed” arises. The breed
as it is in the dataset cannot be integreated into our model. It must be con-
verted into a numeric code. One possibility is to assign each breed to a number
according to how heavy an average animal of the breed is expected to be. Be-
cause this assignment is difficult to do, as the body weight of animals within a
given breed show a certain variation. For our example, the following assignment
of breeds to numeric codes is assumed.

Table 3.2: Assignment of Breeds to numeric Codes

Code Breed
1 Angus
2 Limousin
3 Simmental

For reasons of simplicity, we assume that the variable “breed” is the only pre-
dictor in a simple regression model𝐸(𝑦𝑖) = 𝑏0 + 𝑏1𝑥𝑖 (3.1)

where 𝐸(𝑦𝑖) stands for the expected value of body weight (𝑦𝑖) of animal 𝑖, 𝑏0 is
the intercept, 𝑥𝑖 corresponds to the numeric code of the breed of animal 𝑖 and𝑏1 is the regression coefficient for the breed code. The influence of the predictor
variable breed code on body weight could be tested with the hypothesis 𝑏1 = 0
which is done by the function lm() in R.
Although this analysis as described is permissible, it does come with a number
of problems which show that the assumptions behind this type of model are
unrealistic. This can best be shown by looking at the expected values of body
weight (BW) for animals of the different breeds.
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𝐸(BW Angus) = 𝑏0 + 𝑏1𝐸(BW Limousin) = 𝑏0 + 2𝑏1𝐸(BW Simmental) = 𝑏0 + 3𝑏1 (3.2)

This means, for example, that

𝐸(BW Limousin) − 𝐸(BW Angus) = 𝐸(BW Simmental) − 𝐸(BW Limousin)𝐸(BW Simmental) − 𝐸(BW Angus) = 2 [𝐸(BW Limousin) − 𝐸(BW Angus)]
(3.3)

Depending on the data, the relations shown in (3.3) might be quite unrealistic.
And even without data, only by the allocation of numerical codes to the different
breed, the consequences shown in (3.3) are forced on the analysis results. The
only real estimates that the analysis yields are the one of 𝑏0 and of 𝑏1. This will
also be the case, if different numerical codes are used for the different levels of
the variable.
The inherent difficulty with the analysis suggested above is the allocation of
numerical codes to non-quantitative variables such as breed. Yet such varibles
are of great interest in many scientific areas. Allocating numerical codes to such
variables involves at least two problems.

1. Often the assignment cannot be made in a reasonable way and is thereby
to a large extent an arbitrary process.

2. Making such allocations of numeric codes to different levels of a variable
imposes value differences on the categories of the variable such as shown
in equation (3.3).

The above state problems can best be solved by using a type of model that is
often referred to as regession on dummy (0, 1) variables. In the context here, we
are calling these models just fixed linear effect models. The description of these
models is deferred to a later section. We first describe an important exception
in which the application of a linear regression model on discrete variables is very
reasonable and has a wide range of applications.

3.3 Linear Regression Analysis for Genomic
Data

The question why linear regression models can be applied to genomic data is
best answered by looking at the data. In general, genomic breeding values can
either be estimated using a two-step procedure or by a single step approach. At
the moment, we assume that we are in the first step of the two step approach
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Figure 3.1: Structure of Dataset To Estimate GBV

where we estimate the marker effects (𝑎-values) in a reference population or
alternatively we have a perfect data set with all animals genotyped and with a
phenotypic observation in a single step setting. Both situations are equivalent
when it comes to the structure of the underlying dataset. Furthermore the same
class of models can be used to analyse the type of data.

3.4 Data
As already mentioned in section 3.3, we are assuming that we have a perfect
dataset for a given population of animals. That means each animal 𝑖 has a
phenotypic observation 𝑦𝑖 for a given trait of interest. Furthermore, we assume
to have a map of only three SNP markers. The marker loci are called 𝐺, 𝐻 and𝐼 . All markers have two alleles each. Figure 3.1 tries to illustrate the structure
of a dataset used to estimate genomic breeding values (GBV).

As can be seen from Figure 3.1 each of the 𝑁 animals have known genotypes
for all three SNP markers and they all have a phenotypic observation 𝑦𝑖 (𝑖 =1, ⋅, 𝑁). Because we are assuming each SNP marker to be bi-allelic, there are
only three possible marker genotypes at every marker position. Hence marker
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genotypes are discrete entities with a fixed number of levels. Due to the nature of
the SNP marker genotype data, we can already say that they could be modeled
as fixed effects in a fixed linear effects model. More details about the model will
follow in section 3.5.

3.5 Model
The goal of our data analysis using the dataset described in section 3.4 is to come
up with estimates for genomic breeding values for all animals in our dataset. The
genomic breeding values will later be used to rank the animals. The ranking
of the animals according to the GBV is used to select the parents of the future
generation of livestock animals. It probably makes sense to distinguish between
two different types of models that we have to set up. On the one side we need
a model that describes the underlying genetic architecture which is present
in our dataset. We will be using a so-called genetic model to describe this.
On the other side, we have to be able to get estimates for the GBVs which
requires a statistical model which is able to estimate unknown parameters as
a function of observed data. In the end, we will realize that the two models
are actually the same model but they are just different ways of looking at the
same structure of the underlying phenomena. These phenomena characterize
the relationship between genetic architecture of an animal and the expression
of a certain phenotypic trait in that same animal.

3.5.1 Genetic Model
The availability of genomic information for all animals in the dataset makes
it possible to use a polygenic model. In contrast to an infinitesimal model, a
polygenic model uses a finite number of discrete loci to model the genetic part
of an expressed phenotypic observation. From quantitative genetics (see e.g.
[Falconer and Mackay, 1996] for a reference) we know that every phenotypic
observation 𝑦 can be separated into a genetic part 𝑔 and an environmental part𝑒. This leads to the very simple genetic model𝑦 = 𝑔 + 𝑒 (3.4)

The environmental part can be split into some fixed known systematic factors
such as herd, season effects, age and more and into a random unknown part.
The systematic factors are typically grouped into a vector of fixed effects called𝛽. The unknown environmental random part is usually called 𝜖. This allows to
re-write the simple genetic model in (3.4) as𝑦 = 𝛽 + 𝑔 + 𝜖 (3.5)

The genetic component 𝑔 can be decomposed into contributions from the finite
number of loci that are influencing the observation 𝑦. In our example dataset



30 CHAPTER 3. FIXED LINEAR EFFECTS MODELS

(see Figure 3.1) there are three loci1 that are assumed to have an effect on 𝑦.
Ignoring any interaction effects between the three loci and thereby assuming a
completely additive model, the overall genetic effect 𝑔 can be decomposed into
the sum of the genotypic values of each locus. Hence

𝑔 = 𝑘∑𝑗=1 𝑔𝑗 (3.6)

where for our example 𝑘 is equal to three2.

Considering all SNP loci to be purely additive which means that we are ignoring
any dominance effects, the genotypic values 𝑔𝑗 at any locus 𝑗 can just take one
of the three values −𝑎𝑗, 0 or +𝑎𝑗 where 𝑎𝑗 corresponds to the 𝑎 value from the
mono-genic model (see Figure ??). For our example dataset the genotypic value
for each SNP genotype is given in the following table.

Table 3.3: Genotypic Values For All Three SNP-Loci

SNP Locus Genotype Genotypic Value𝑆𝑁𝑃1 𝐺1𝐺1 𝑎1𝑆𝑁𝑃1 𝐺1𝐺2 0𝑆𝑁𝑃1 𝐺2𝐺2 −𝑎1𝑆𝑁𝑃2 𝐻1𝐻1 𝑎2𝑆𝑁𝑃2 𝐻1𝐻2 0𝑆𝑁𝑃2 𝐻2𝐻2 −𝑎2𝑆𝑁𝑃3 𝐼1𝐼1 𝑎3𝑆𝑁𝑃3 𝐼1𝐼2 0𝑆𝑁𝑃3 𝐼2𝐼2 −𝑎3
From the Table 3.3 we can see that always the allele with subscript 1 is taken
to be that with the positive effect. Combining the information from Table 3.3
together with the decomposition of the genotypic value 𝑔 in (3.6), we get𝑔 = 𝑚𝑇 ⋅ 𝑎 (3.7)

where 𝑚 is an indicator vector taking values of −1, 0 and 1 depending on the
SNP marker genotype and 𝑎 is the vector of 𝑎 values for all SNP marker loci.

1Implicitly, we are treating the SNP-markers to be identical with the underlying QTL. But
based on the fact that we have very many SNPs spread over the complete genome, there will
always be SNP sufficiently close to every QTL that influences a certain trait. But in reality
the unknown QTL affect the traits and not the SNPs.

2In reality 𝑘 can be 1.5 ∗ 105 for some commercial SNP chip platforms. When working
with complete genomic sequences, 𝑘 can also be in the order of 3 ∗ 107.
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Combining the decomposition in (3.7) together with the basic genetic model in
(3.5), we get 𝑦 = 𝛽 + 𝑚𝑇 ⋅ 𝑎 + 𝜖 (3.8)

The result obtained in (3.5) is the fundamental decomposition of the phenotypic
observation 𝑦 into a genetic part represented by the SNP marker information
(𝑚) and an environmental part (𝛽 and 𝜖). The 𝑎 values are unknown and must
be estimated. The estimates of the 𝑎 values will then be used to predict the
GBVs. How this estimation procedure works is described in the next section
3.5.2.

3.5.2 Statistical Model
When looking at the fundamental decomposition given in the genetic model
presented in (3.8) from a statistics point of view, the model in (3.8) can be
interpreted as fixed linear effects model (FLEM). FLEM represent a class
of linear models where each model term except for the random residual term
is a fixed effect. Furthermore, besides a random error term, the response is
explained by a linear function of the predictor variables.
Using the decomposition given in our genetic model (see equation (3.8)) for our
example dataset illustrated in Figure 3.1, every observation 𝑦𝑖 of animal 𝑖 can
be written as 𝑦𝑖 = 𝑊𝑖 ⋅ 𝛽 + 𝑀𝑖 ⋅ 𝑎 + 𝜖𝑖 (3.9)

where
• 𝑦𝑖 is the observation of animal 𝑖
• 𝛽 is a vector of unknown systematic environmental effects
• 𝑊𝑖 is an indicator row vector linking 𝛽 to 𝑦𝑖
• 𝑎 is a vector of unknown additive allele substitution effects (𝑎 values)
• 𝑀𝑖 is an indicator row vector encoding the SNP genotypes of animal 𝑖 and
• 𝜖𝑖 is the random unknown environmental term belonging to animal 𝑖

In the following section, we write down the definition of a FLEM and compare
it to the statistical model given in (3.9).

3.6 Definition of FLEM
The multiple fixed linear effects model is defined as follows.
In a fixed linear effects model, every observation 𝑖 in a dataset is characterized
by a response variable and a set of predictors. Up to some random errors
the response variable can be expressed as a linear function of the predictors. The
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proposed linear function contains unknown parameters. The goal is to estimate
both the unknown parameters and the error variance.

3.6.1 Terminology
For datasets where both the predictors and the response variables are on a
continuous scale, which means that they correspond to measured quantities
such as body weight, breast circumference or milk yield, the model is referred
to as multiple linear regression model. Because the statistical model in
(3.9) contains the SNP genotypes as discrete fixed effects, we are not dealing
with a regression model but with a more general fixed linear effects model.

3.6.2 Model Specification
An analysis of the model given in (3.9) shows that it exactly corresponds to
the definition ??. In this equivalence, the observation 𝑦𝑖 corresponds to the
response variable. Furthermore, the unknown environmental term 𝜖 corresponds
to the random residual part in the FLEM. Except for the random residuals the
response variable 𝑦𝑖 is a linear function of the fixed effects which corresponds
to all systematic environmental effects and to all SNP genotype effects.
For the description of how to estimate the unknown parameter 𝛽 and 𝑎 in the
model (3.9), it is useful to combine 𝛽 and 𝑎 into a single vector of unknown
parameters and we call it 𝑏.

𝑏 = [ 𝛽𝑎 ] (3.10)

Taking the equations as shown in (3.9) for all observations (𝑖 = 1, … , 𝑁) and
expressing them in matrix-vector notation, we get𝑦 = 𝑋𝑏 + 𝜖 (3.11)

where
• 𝑦 is the vector of 𝑁 observations
• 𝑏 is the vector of all unknown fixed effects
• 𝑋 is the incidence matrix linking the parameters of 𝑏 to 𝑦
• 𝜖 is the vector of random residuals

The incidence matrix 𝑋 in (3.11) can be composed from the matrices 𝑊 and𝑀 by concatenating the latter two matrices, i.e.,𝑋 = [ 𝑊 𝑀 ] (3.12)
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