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• 𝜖 is the vector of random residuals
The incidence matrix 𝑋 in (3.11) can be composed from the matrices 𝑊 and𝑀 by concatenating the latter two matrices, i.e.,𝑋 = [ 𝑊 𝑀 ] (3.12)

3.5 Regression On Dummy Variables
In a regression model both the response variable and the predictor variables are
continuous variables. Examples of such variables are body weight and breast
circumference which are both measured and the measurements are expressed
as real numbers. In contrast to such a regression model, the predictor variable
Breed in the extended dataset given in Table 3.1 is a discrete variable. That
means, observations of such a variable can only take a certain number of values.
These values are determined by the nature of the variable. For our example
with the breeds of animals, the observed values can only come from the existing
breeds of that species from which the observations were generated.
The discussion of regression on dummy variables is fascilitated by the notioon
of factors and levels. This terminology is adapted from the literature of ex-
perimental design. In the study of the influence of an animals breed on its body
weight, we are interested in the extent to which each breed is associated to the
body weight. Thus we want to see whether a group of animals from a particular
breed show specific values for their body weights and whether these values are
different from the body weights of animals from a different breed.
The problem of discrete variables not being measureable is acknowledged by
the introduction of the terms “factor” and “levels”. Hence a discrete variable
is referred to as a “factor”. The possible values that a factor can take are
called “levels”. The concept of levels enables us to quantify differences between
the effects that different levels of a factor have on a certain response variable.
Translating the concept of levels and factors to our extended dataset (Table 3.1)
means that the breed of an animal is a “factor” and the different breeds are
correspond to the different levels of the factor “breed”.

3.5.1 Model
The goal of the model that we are going to develop is to quantify the effect
of each level of the factor “breed” on the response variable “body weight”. In
a first step, all other variables with a potential influence on body weight are
ignored. Hence, we are just looking at the possible effect of the breed on body
weight. This is done by setting up a regression on three independent variables𝑥1, 𝑥2 and 𝑥3 𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + 𝑏3𝑥𝑖3 + 𝑒𝑖 (3.13)
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In this context 𝑦𝑖 is the body weight of animal 𝑖 and 𝑏0 and 𝑒𝑖 are the intercept
and the random error term which were already found in the regression analysis
of chapter 2. Corresponding to the independent variables 𝑥1, 𝑥2 and 𝑥3 are the
regression coefficents 𝑏1, 𝑏2 and 𝑏3, respectively. Depending on the definition
of the independent variables 𝑥, the regression coefficients 𝑏 will turn out to be
terms that lead to estimates of the differences of the effects of the different levels
on the response variable.
For the definition of the independent variables 𝑥, it is important to note that
each animal can only have one breed3 associated to it. Each level of the factor
“breed” is assigned to one of the indendent variables 𝑥1, 𝑥2 or 𝑥3. This assign-
ment is completely arbitrary. The assignment given in Table 3.4 is proposed.

Table 3.4: Assignment of Breeds to Independen Variables

Breed Independent Variable
Angus 𝑥1
Limousin 𝑥2
Simmental 𝑥3

For a given animal 𝑖 that is in breed 𝑗, the independent variable assigned to
breed 𝑗 is 1 and all other independent variables are set to 0. This means for
animal 1 from breed Angus, the variable 𝑥1 is set to 1 and all other variables
are set to 0.
For our example shown in Table 3.1 when only looking at body weight as re-
sponse and breed as a factor, 𝑦𝑖𝑗 stands for the 𝑗𝑡ℎ animal with breed-level 𝑖.
Then with 𝑒𝑖𝑗 = 𝑦𝑖𝑗 − 𝐸(𝑦𝑖𝑗), the model is the same as in chapter 2, except for
the two subscripts and for the ordering the observations according to the levels
of the breed factor.

𝑦11 = 𝑏0 + 𝑏1 ∗ 1 + 𝑏2 ∗ 0 + 𝑏3 ∗ 0 + 𝑒11𝑦12 = 𝑏0 + 𝑏1 ∗ 1 + 𝑏2 ∗ 0 + 𝑏3 ∗ 0 + 𝑒12⋯ = ⋯𝑦33 = 𝑏0 + 𝑏1 ∗ 0 + 𝑏2 ∗ 0 + 𝑏3 ∗ 1 + 𝑒33 (3.14)

The system of equations shown in (3.14) can be converted into matrix-vector
notation which turns the model in the familiar form

y = Xb + e (3.15)
3At this point, we assume that all animals are pure-bred. Alternatively, we would interpret

crosses as further distinct levels of the factor “breed”.
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where y and e are both vectors of the same length as there are observations in
the dataset and are defined the same way as in the regression in chapter 2. The
vector b contains the intercept as the first component and regression coefficients
for each level of the factor “breed” in the model. The matrix X is called “design
matrix” and contains zeros and ones that link the regression coefficients of the
appropriate level to the observations.

Analogously to the regression model in chapter 2 the properties of the compo-
nents in vector e of random residuals are such that 𝐸(e) = 0 and 𝑣𝑎𝑟(e) = 𝐼𝜎2.
Applying the least squares procedure to (3.15) yields the same normal equations

X𝑇 Xb(0) = X𝑇 y (3.16)

Due to the definition of the matrix X, it does not have full column rank. Thus
the models as shown in (3.15) that contains factors is also referred to as “models
not of full rank”. An important consequence of the rank deficiency of the matrix
X is that the inverse (X𝑇 X)−1 of (X𝑇 X) does not exist. However the use of
a generalized inverse of (X𝑇 X) solutions to the normal equation (3.16) can be
found.

3.5.2 Parameter Estimation In Models Not Of Full Rank
The goal of model (3.15) is to get an estimate for the unknown parameters in
vector b.

The normal equations in (3.16) are written with the symbol b(0) to denote that
the equations do not have a single solution b(0) in the sense that we were able
to compute them in the case of the regression model. In the case where 𝑋𝑇 𝑋
is singular, there are infinitely many solutions b(0). These solutions can be
expressed as

b(0) = (X𝑇 X)−X𝑇 y (3.17)

where (X𝑇 X)− stands for a generalized inverse of the matrix (X𝑇 X).
3.5.3 Generalized Inverse Matrices
A generalized inverse matrix G of a given matrix A is defined as the matrix
that satisfies the equation AGA = A. The matrix G is not unique. Applying
the concept of a generalized inverse to a system of equations Ax = y, it can be
shown that x = Gy is a solution, if G is a generalized inverse of A. Because G
is not unique, there are infinitely many solutions corresponding to x̃ = Gy +(GA − I)z where z can be an arbitrary vector of consistent length. Applying
these statements concerning generalized inverses and solutions to systems of
equations to (3.17), it means that b(0) is not a unique solution to (3.16) because
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Table 3.5: Example Showing Estimable Functions

Animal Breed Observation
1 Angus 16
2 Angus 10
3 Angus 19
4 Simmental 11
5 Simmental 13
6 Limousin 27

the generalized inverse (X𝑇 X)− is not unique. As a consequence of that non-
uniqueness, the solution b(0) is not suitable as an estimate of the unknown
parameter vector b.

3.5.4 Estimable Functions
The numeric solution of the analysis of the example dataset given in Table 3.1
is the topic of an exercise. When developing that solution, we will see that some
linear functions of b(0) can be found which do not depend on the choice of the
generalized inverse (X𝑇 X)−. Such functions are called estimable functions
and can be used as estimates for the respective functions of the unknown pa-
rameter vector b. The idea of estimable functions can be demonstrated with
the following example.
Let us assume that we have a small data set of 6 animals with observations in
a particular traits and the breed of the animal as an independent factor. The
dataset for that example is given in Table 3.5.
As shown before, we want to estimate the effect of the breed on the observation.
This can be done with the following fixed effects model.

y = Xb + e
with

y = ⎡⎢⎢⎢⎢⎣
161019111327

⎤⎥⎥⎥⎥⎦ , X = ⎡⎢⎢⎢⎢⎣
1 1 0 01 1 0 01 1 0 01 0 1 01 0 1 01 0 0 1

⎤⎥⎥⎥⎥⎦ and b = ⎡⎢⎢⎣
𝜇𝛼1𝛼2𝛼3

⎤⎥⎥⎦
The vector b of unknown parameters consist of the intercept 𝜇 which was pre-
viously called 𝑏0 and the three breed effects 𝛼1, 𝛼2 and 𝛼3. Based on the above
information, the normal equations can be written as
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Table 3.6: Solution of Normal Equations

Elements of Solution 𝑏01 𝑏02 𝑏03 𝑏04𝜇0 16 14 27 -2982𝛼01 -1 1 -12 2997𝛼02 -4 -2 -15 2994𝛼03 11 13 0 3009

Table 3.7: Estimates of Estimable Functions

Linear Function 𝑏01 𝑏02 𝑏03 𝑏04𝛼01 − 𝛼02 3.0 3.0 3.0 3.0𝜇0 + 𝛼01 15.0 15.0 15.0 15.0𝜇0 + 1/2(𝛼02 + 𝛼03) 19.5 19.5 19.5 19.5

⎡⎢⎢⎣
6 3 2 13 3 0 02 0 2 01 0 0 1⎤⎥⎥⎦ ⎡⎢⎢⎣

𝜇0𝛼01𝛼02𝛼03
⎤⎥⎥⎦ = ⎡⎢⎢⎣

96452427⎤⎥⎥⎦
The above equations have infinitely many solutions. Four of them are shown
below in Table 3.6.

The differences between the same elements in the four numerical solutions make
it clear why no solution b0 can be used as estimates for the unknown parameters
in b.

This problem can be addressed, if we are not considering the single elements of
a solution vector b0, but linear functions of these elements. Examples of such
linear functions are shown in Table 3.7.

The values of the expressions shown in Table 3.7 are invariant to whatever
solution 𝑏0 is selected. Because this invariance statement is true for all solutions
b0, these functions are of special interest which corresponds to

• 𝛼01 − 𝛼02: estimate of the difference between breed effects for Angus and
Simmental

• 𝜇0 + 𝛼01: estimate of the general mean plus the breed effect of Angus
• 𝜇0 +1/2(𝛼02 +𝛼03): estimate of the general mean plus mean effect of breeds

Simmental and Limousin
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3.5.4.1 Definition of Estimable Functions

In summary the underlying idea of estimable functions are that they are linear
functions of the parameters b that do not depend on the numerical solutions
b0 of the normal equations. Because estimable functions are functions of the
parameters b, they can be expressed as q𝑇 b where q𝑇 is a row vector. In a more
formal way estimable functions can be described by the following definition.

Definition 3.2 (Estimable Function). A (linear) function of the parameters 𝑏
is defined as estimable, if it is identically equal to some linear function of the
expected value of the vector of observations 𝑦.

This means the linear function q𝑇 b is estimable, if

q𝑇 b = t𝑇 𝐸(y)
for some vector t. That means, if there exists a vector t, such that t𝑇 𝐸(y) =
q𝑇 b, then q𝑇 b is said to be estimable. For our example shown in Table 3.5, the
expected value of the observations of all animals with breed Angus is obtained
by

𝐸(𝑦1𝑗) = 𝜇 + 𝛼1
with t𝑇 = [ 1 1 1 0 0 0 ] and q𝑇 = [ 1 1 0 0 ]
3.5.5 Properties of Estimable Functions
Among the many properties we are here just listing the ones that are considered
important. The complete list of properties can be found in [Searle, 1971].

• Form of estimable function. If q𝑇 b is estimable, then q𝑇 b = t𝑇 𝐸(y) for
some t. By definition 𝐸(y) = Xb and therefore, q𝑇 b = t𝑇 Xb. Because
estimability is not a concept that depends on b, this result is true for all
values of b. Therefore

q𝑡 = t𝑇 X

for some vector t.

• Invariance to solutions b0. If q𝑇 b is estimable, the linear function q𝑇 b0
is invariance to whatever solution of the normal equation

X𝑇 Xb0 = X𝑇 y

is used for b0. This is because
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q𝑇 b0 = t𝑇 Xb0 = t𝑇 XGX𝑇 y
where G is a generalized inverse of X𝑇 X and XGX𝑇 is invariant to G which
means that it is the same for any choice of G.

3.5.5.1 Testing for Estimability
A given function q𝑇 b is estimable, if some vector t can be found, such that
t𝑇 X = q𝑇 . For a known value of q, it might not be easy to find a vector t
satisfying t𝑇 X = q𝑇 . Alternatively to finding a vector t, estimability of q𝑇 b
can also be investigated by seeing whether q has the property that

q𝑇 H = q𝑇
with H = GX𝑇 X. A proof of that can be found in [Searle, 1971].
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