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5.3.3 Animal Model
An extension of the sire model is called animal model. In an animal model not
only the sires get predicted breeding values but all animals in the pedigree will
be assigned a predicted breeding value. That is only possible, if we extend our
dataset by the column of the dam of each animal for which we have observations.
That leads to the following table.

Table 5.9: Pre-weaning Gain in kg for five beef animals

Animal Sire Dam Sex WWG
4 1 NA M 4.5
5 3 2 F 2.9
6 1 2 F 3.9
7 4 5 M 3.5
8 3 6 M 5.0

In Table 5.9 the Dam of animal 4 is noted as NA which stands for not available.
This means that the dam of animal 4 is not known.

Because in an animal model all animals in the pedigree will get a predicted
breeding value, we write the vector of breeding values as u and the complete
animal model can be written as follows

y = Xb + Zu + e (5.17)

All other components have the same meaning as in the sire model. For the vector
u, we also have to define the expeted value (𝐸(u)) and the variance-covariance
matrix 𝑣𝑎𝑟(u). Breeding values, by their very nature, are deviations from a
population mean. This leads to the definition of the expected value of u to
be 𝐸(u) = 0. The variance-covariance matrix 𝑣𝑎𝑟(u) of the vector of breeding
values u is similar to the sire model given by the product of a matrix A and the
variance component 𝜎2𝑢. The matrix A is called numerator relationship matrix.
The diagonal elements (A)𝑖𝑖 of the matrix A are computed as

(A)𝑖𝑖 = 1 + 𝐹𝑖 (5.18)

where 𝐹𝑖 is the inbreeding coefficient of animal 𝑖 which corresponds to half of
the relationship coefficient of the parents 𝑠 and 𝑑 of animal 𝑖. As a formula this
can be written as

𝐹𝑖 = 12 ∗ (A)𝑠𝑑 (5.19)
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The offdiagonal elements of A are the proportionality constants which together
with 𝜎2𝑢 form the covariance of the breeding values of two animals. If we look
at two animals 𝑖 and 𝑗, the covariance 𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗) can be written as

𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗) = (A)𝑖𝑗 ∗ 𝜎2𝑢 (5.20)

The coefficients (A)𝑖𝑗 can be determined by decomposing both breeding values𝑢𝑖 and 𝑢𝑗 recursively into the breeding of their parents until some common
ancestors are found in the pedigree. Based on this decomposition, the covariance𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗) and with that the coefficient (A)𝑖𝑗 can be computed. If no common
ancestors of 𝑖 and 𝑗 can be found in the pedigree the covariance 𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗) is
zero.

The example dataset shown in Table 5.9 cannot be analysed with the package
pedigreemm. The problem is that pedigreemm does not allow to specify given
variance components, but it wants to estimate the variance components from
the dataset specified. In the small dataset with only one observation per animal,
pedigreemm cannot estimate both variance components 𝜎2𝑒 and 𝜎2𝑢.

But as already shown with the sire model, it is possible to get estimates of the
fixed effects and predicted breeding values for all animals using the solutions to
the following mixed model equations.

[ 𝑋𝑇 𝑋 𝑋𝑇 𝑍𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝜆 ∗ 𝐴−1 ] [ ̂𝑏�̂� ] = [ 𝑋𝑇 𝑦𝑍𝑇 𝑦 ] (5.21)

where 𝜆 = 𝜎2𝑒/𝜎2𝑢. For our example the matrix 𝑋 is the same as for the sire
model. The matrix 𝑍 is defined as

𝑍 = ⎡⎢⎢⎢⎣
0 0 0 1 0 0 0 00 0 0 0 1 0 0 00 0 0 0 0 1 0 00 0 0 0 0 0 1 00 0 0 0 0 0 0 1

⎤⎥⎥⎥⎦
The inverse A1 of the numerator relationship matrix can be computed by the
function pedigreemm::getAinv()
library(pedigreemm)
ped_ani <- pedigree(sire = c(rep(NA, n_nr_founder),1,3,1,4,3),

dam = c(rep(NA, n_nr_founder),NA,2,2,5,6),
label = as.character(1:n_nr_animal))

mat_Ainv <- getAInv(ped = ped_ani)
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A1 =
⎡⎢⎢⎢⎢⎢⎢⎢⎣

1.8333 0.5 0 −0.6667 0 −1 0 00.5 2 0.5 0 −1 −1 0 00 0.5 2 0 −1 0.5 0 −1−0.6667 0 0 1.8333 0.5 0 −1 00 −1 −1 0.5 2.5 0 −1 0−1 −1 0.5 0 0 2.5 0 −10 0 0 −1 −1 0 2 00 0 −1 0 0 −1 0 2
⎤⎥⎥⎥⎥⎥⎥⎥⎦

Assuming that variance components were estimated from a different dataset, the
following values can be used, 𝜎2𝑢 = 20 and 𝜎2𝑒 = 40. With all this information,
mixed model equations can be solved.

For the fixed effects we get

Table 5.10: Solutions for fixed Effect of Sex

Sex Solution
F 3.404430
M 4.358502

For the random animal breeding values, we get

Table 5.11: Solutions for random breeding values of all animals

Animal Solution
1 0.0984446
2 -0.0187701
3 -0.0410842
4 -0.0086631
5 -0.1857321
6 0.1768721
7 -0.2494586
8 0.1826147

Comparing the order of the breeding values of sires 1, 3 and 4, it can be seen that
they are not the same for the sire model and the animal model. Although, it has
to be noted that the differences are small, but the fact that in the animal model
all available information are considered for the prediction of the breeding values,
can make a difference when it comes to the ranking of animals as potential
parents according to their predicted breeding values.
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5.4 Genomic BLUP
Prediction of genomic breeding values can be done with two different modelling
approaches.

1. Marker effect models (MEM): Linear mixed effects models with marker
effects as random effects

2. Breeding-value based models (BVM): Genomic breeding values as random
effects

5.4.1 Marker Effect Models
In MEM random effects of markers are directly included in the model. For an
idealized data set we can write

𝑦 = 1𝑛𝜇 + 𝑊𝑞 + 𝑒 (5.22)

where 𝑦 vector of length 𝑛 with observations𝜇 general mean denoting fixed effects1𝑛 vector of length 𝑛 of all ones𝑞 vector of length 𝑚 of random SNP effects𝑊 design matrix relating SNP-genotypes to observations𝑒 vector of length 𝑛 of random error terms

The vector 𝑞 contains a separate random effect for each SNP. Because the SNP
effects are random, the expected value 𝐸 [𝑞] and the variance 𝑣𝑎𝑟(𝑞) must be
specified. In general, the random effects are defined as deviations and hence
their expected value is 0. This means 𝐸 [𝑞] = 0. The variance explained by each
SNP corresponds to 𝜎2𝑞 and is assumed to be constant. The variance 𝑣𝑎𝑟(𝑒) of
the random error terms is taken to be 𝑣𝑎𝑟(𝑒) = 𝐼 ∗ 𝜎2𝑒 where 𝐼 is the identity
matrix and 𝜎2𝑒 is the error variance.

The random marker effects can be predicted using the following mixed model
equations.

[ 1𝑇𝑛 1𝑛 1𝑇𝑛 𝑊𝑊 𝑇 1𝑛 𝑊 𝑇 𝑊 + 𝜆𝑞 ∗ 𝐼 ] [ ̂𝜇 ̂𝑞 ] = [ 1𝑇𝑛 𝑦𝑊 𝑇 𝑦 ] (5.23)

with 𝜆𝑞 = 𝜎2𝑒/𝜎2𝑞 .

The genomic breeding value for a given animal 𝑖 with given genotypes at all
SNP-marker positions is computed by summing over the appropriate predicted
marker effects solutions ̂𝑞 determined by the genotypes of animal 𝑖.
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5.4.2 Breeding Value Models
In a breeding value model a linear combination of all SNP effects are combined
into a random genomic breeding value. This approach is meant when animal
breeders are talking about Genomic BLUP (GBLUP). The mixed linear effects
model in GBLUP corresponds to

𝑦 = 𝑋𝑏 + 𝑍𝑔 + 𝑒 (5.24)

where 𝑦 vector of length 𝑛 with observations𝑏 vector of length 𝑟 with fixed effects𝑋 incidence matrix linking elements in 𝑏 to observations𝑔 vector of length 𝑡 with random genomic breeding values𝑍 incidence matrix linking elements in 𝑔 to observations𝑒 vector of length 𝑛 of random error terms

The vector 𝑔 contains the genetic effects of all animals that are genotyped which
means that they have genomic information based on SNP genotypes available.
The expected values of all random effects is assumed to be 0. The variance𝑣𝑎𝑟(𝑔) of the random genomic breeding values is given by 𝑣𝑎𝑟(𝑔) = 𝐺 ∗ 𝜎2𝑔.
This expression looks very similar to the variance of the breeding values in the
traditional BLUP animal model. The matrix 𝐺 is called genomic relationship
matrix (GRM). The variance 𝑣𝑎𝑟(𝑒) of the random error terms is given by𝑣𝑎𝑟(𝑒) = 𝐼 ∗ 𝜎2𝑒 .

Mostly the older animals for which SNP information is available may have ob-
servations (𝑦) in the dataset. The younger animals may have SNP information
but in most cases no information is available for them. The goal of GBLUP is
to predict genomic breeding values for these animals. Depending on the number
of genotyped animals which is in most cases smaller compared to the number of
SNP loci, the BVM model has the following advantages over the MEM model

1. The length of the vector 𝑔 is 𝑡 which corresponds to the number of geno-
typed animals which in most cases is smaller than the length of the vector𝑞 which is 𝑚 corresponding to the number of SNPs.

2. Accuracies of genomic breeding values can be computed analogously to
the traditional BLUP animal model. This is analogy of accuracies does
not exist in MEM.

3. BVM can be combined with pedigree-based animal model analysis which
is then referred to as single step approach.

More recently with the number of genotyped animals growing very fast, these
advantages are no longer as important as they used to be.

Genomic breeding values from a BVM can be predicted by solving the following
mixed model equations.
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[ 𝑋𝑇 𝑋 𝑋𝑇 𝑍𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝜆𝑔 ∗ 𝐺−1 ] [ ̂𝑏�̂� ] = [ 𝑋𝑇 𝑦𝑍𝑇 𝑦 ] (5.25)

with 𝜆𝑔 = 𝜎2𝑒/𝜎2𝑔.

5.5 Genomic Relationship Matrix
The variance-covariance matrix between the genetic effects 𝑔 in model (5.24) is
proportional to the genomic relationship matrix 𝐺. Analogously to the tradi-
tional BLUP animal model where the variance-covariance matrix of the random
breeding values is proportional to the numerator relationship matrix 𝐴.

5.5.1 Derivation of 𝐺
Because the traditional pedigree-based BLUP animal model is very well re-
spected in animal breeding and the defined model (5.24) produces an analogy of
the genomic evaluation model to the already known animal model the following
properties of 𝑔 and the genomic relationship matrix 𝐺 are essential.

1. The genetic effects 𝑔 should correspond to a linear combination of the
single SNP-effects 𝑞

2. The genetic effects 𝑔 should be defined as deviations from a common mean,
leading to the expected value 𝐸 [𝑔] = 0.

3. The variance-covariance matrix of the vector 𝑔 corresponds to the product
of 𝐺 times a common variance component 𝜎2𝑔.

4. The genomic relationship matrix 𝐺 should be similar to the numerator
relationship matrix 𝐴. The diagonal elements should be close to 1 and
off-diagonal elements of animals that are related should have higher values
than elements between unrelated animals.

The matrix 𝐺 can be computed based on SNP genotypes. In what follows the
material of [VanRaden, 2008] and [Gianola et al., 2009] is used to derive the
genomic relationship matrix.

5.5.2 Linear Combination of SNP Effects
Based on the SNP marker information the marker effects in the vector 𝑞 can
be estimated. Hence, we assume that the vector 𝑞 is known. The property that𝑔 should be a linear combination of the effects in 𝑞 means that there exists a
matrix 𝑈 for which we can write

𝑔 = 𝑈 ⋅ 𝑞 (5.26)

The matrix 𝑈 is determined based on the desired properties described above.
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5.5.3 Deviation
The genetic effects 𝑔 should be defined as deviation from a common basis. Due to
this definition the expected value of the genetic effect is determined by 𝐸 [𝑔] = 0.
This requirement has the following consequences for the matrix 𝑈 .
Let us have a look at the random variable 𝑤 which takes the SNP-genotype codes
in the matrix 𝑊 in the MEM model given in (5.22). Let us further assume that
the SNP loci are in Hardy-Weinberg equilibrium. Then 𝑤 can take the following
values

𝑤 = ⎧{⎨{⎩ −1 with probability (1 − 𝑝)20 with probability 2𝑝(1 − 𝑝)1 with probability 𝑝2 (5.27)

The expected value of 𝑤 corresponds to

𝐸 [𝑤] = (−1)∗(1−𝑝)2 +0∗2𝑝(1−𝑝)+1∗𝑝2 = −1+2𝑝−𝑝2 +𝑝2 = 2𝑝−1 (5.28)

The matrix 𝑈 is computed as the difference between the matrix 𝑊 and the
matrix 𝑃 where the matrix 𝑃 corresponds to column vectors which have ele-
ments corresponding to 2𝑝𝑗 − 1 where 𝑝𝑗 corresponds to the allele frequency of
the positive allele at SNP locus 𝑗. The following table gives an overview of the
elements of matrix 𝑈 for the different genotypes at SNP locus 𝑗.

Genotype Genotypic Value Coding in Matrix 𝑈(𝐺2𝐺2)𝑗 −2𝑝𝑗𝑞𝑗 −1 − 2(𝑝𝑗 − 0.5) = −2𝑝𝑗(𝐺1𝐺2)𝑗 (1 − 2𝑝𝑗)𝑞𝑗 −2(𝑝𝑗 − 0.5) = 1 − 2𝑝𝑗(𝐺1𝐺1)𝑗 (2 − 2𝑝𝑗)𝑞𝑗 1 − 2(𝑝𝑗 − 0.5) = 2 − 2𝑝𝑗
Here we assume that for a locus 𝐺𝑗, the allele (𝐺1)𝑗 has a positive effect and
occurs with frequency 𝑝𝑗. We can now verify that with this definition of 𝑈 , the
expected value for a genetic effect determined by the locus 𝑗 corresponds to

𝐸 [𝑔]𝑗 = [(1 − 𝑝𝑗)2 ∗ (−2𝑝𝑗) + 2𝑝𝑗(1 − 𝑝𝑗)(1 − 2𝑝𝑗) + 𝑝2𝑗 (2 − 2𝑝𝑗)] 𝑞𝑗= 0 (5.29)

5.5.4 Variance of Genetic Effects
As already postulated the variance-covariance matrix of the genetic effects
should be proportional to the genomic relationship matrix 𝐺.𝑣𝑎𝑟(𝑔) = 𝐺 ∗ 𝜎2𝑔 (5.30)
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Computing the same variance-covariance matrix based on equation (5.26)𝑣𝑎𝑟(𝑔) = 𝑈 ⋅ 𝑣𝑎𝑟(𝑞) ⋅ 𝑈𝑇 (5.31)

The variance-covariance matrix of the SNP effects is 𝑣𝑎𝑟(𝑞) = 𝐼 ∗ 𝜎2𝑞 . Inserting
this into (5.31) we get 𝑣𝑎𝑟(𝑔) = 𝑈𝑈𝑇 𝜎2𝑞 .

In [Gianola et al., 2009] the variance component 𝜎2𝑔 was derived from 𝜎2𝑞 leading
to

𝜎2𝑔 = 2 𝑚∑𝑗=1 𝑝𝑗(1 − 𝑝𝑗)𝜎2𝑞 (5.32)

Now we combine all relationships for 𝑣𝑎𝑟(𝑔) leading to𝑣𝑎𝑟(𝑔) = 𝐺 ∗ 𝜎2𝑔 = 𝑈𝑈𝑇 𝜎2𝑞 (5.33)

In (5.33), 𝜎2𝑔 is replaced by the result of (5.32).

𝐺 ∗ 2 𝑚∑𝑗=1 𝑝𝑗(1 − 𝑝𝑗)𝜎2𝑞 = 𝑈𝑈𝑇 𝜎2𝑞 (5.34)

Dividing both sides of (5.34) by 𝜎2𝑞 and solving for 𝐺 gives us a formula for the
genomic relationship matrix 𝐺

𝐺 = 𝑈𝑈𝑇2 ∑𝑚𝑗=1 𝑝𝑗(1 − 𝑝𝑗) (5.35)

5.6 How Does GBLUP Work
The genomic relationship matrix 𝐺 allows to predict genomic breeding values
for animals with SNP-Genotypes without any observation in the dataset. This
fact is the basis of the large benefit of genomic selection. As soon as a young
animal is born, its SNP genotypes can be determined and a genomic breeding
value can be predicted. This genomic breeding value is much more accurate
then the traditional breeding value based only on ancestral information.
The BVM model given in (5.24) is a mixed linear effects model. The solution
for the unknown parameters can be obtained by solving the mixed model equa-
tions shown in (5.36). In this form the Inverse 𝐺−1 of 𝐺 and the vector ̂𝑔 of
predicted genotypic breeding values are split into one part corresponding to the
animals with observations and a second part for the animals without phenotypic
information.
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⎡⎢⎣𝑋𝑇 𝑋 𝑋𝑇 𝑍 0𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝐺(11) 𝐺(12)0 𝐺(21) 𝐺(22)⎤⎥⎦ ⎡⎢⎣ ̂�̂�𝑔1̂𝑔2⎤⎥⎦ = ⎡⎢⎣𝑋𝑇 𝑦𝑍𝑇 𝑦0 ⎤⎥⎦ (5.36)

The matrix 𝐺(11) denotes the part of 𝐺−1 corresponding to the animals with
phenotypic observations. Similarly, 𝐺(22) stands for the part of the animals
without genotypic observations. The matrices 𝐺(12) and 𝐺(21) are the parts of𝐺−1 which link the two groups of animals. The same partitioning holds for
the vector of predicted breeding values. The vector ̂𝑔1 contains the predicted
breeding values for the animals with observations and the vector ̂𝑔2 contains the
predicted breeding values of all animals without phenotypic observations.

Based on the last line of (5.36) the predicted breeding values ̂𝑔2 of all animals
without phenotypic observations can be computed from the predicted breeding
values ̂𝑔1 from the animals with observations.

̂𝑔2 = − (𝐺22)−1 𝐺21 ̂𝑔1 (5.37)

Equation (5.37) is referred to as genomic regression of predicted breeding values
of animals without observation on the predicted genomic breeding values of
animals with observations.

5.7 Single Step Genomic BLUP
In real-world livestock breeding datasets not all animals are genotyped. But we
want to have predicted breeding values for all animals in a population. Futher-
more, the genomic information of the genotyped animals should also give more
accurate predicted breeding values for related animals without genomic infor-
mation.

The single step genomic BLUP model can be specified as

𝑦 = 𝑋𝑏 + 𝑍𝑔 + 𝑒 (5.38)

with 𝑣𝑎𝑟(𝑔) = 𝐻 ∗ 𝜎2𝑔 and 𝑣𝑎𝑟(𝑒) = 𝐼 ∗ 𝜎2𝑒 . At this point it is important to note
that the vector 𝑔 of genomic breeding values can be split into two parts

𝑔 = [ 𝑔1𝑔2 ]
where 𝑔1 is the vector of breeding values for non-genotyped animals and 𝑔2 is
the vector of genotyped animals.
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[ 𝑋𝑇 𝑋 𝑋𝑇 𝑍𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝜆 ∗ 𝐻−1 ] [ ̂𝑏 ̂𝑔 ] = [ 𝑋𝑇 𝑦𝑍𝑇 𝑦 ] (5.39)

where here 𝜆 = 𝜎2𝑒/𝜎2𝑔.

The above required inverse matrix 𝐻−1 can be shown (e.g. in [Legarra et al.,
2014]) to correspond to

𝐻−1 = 𝐴−1 + ( 0 00 𝐺−1 − 𝐴−122 )
where 𝐴−1 is the inverse numerator relationship matrix and 𝐴22 corresponds to
the part of the numerator relationship matrix containing all genotyped animals.
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