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5.1.4 Linear Mixed Effects Models
Linear mixed effects models or just mixed models are a combination or a merger
of fixed linear effects models and random models. That means mixed models
contain both fixed effects and random effects. A first example of a dataset which
can be modelled with a mixed model is shown in Table 5.3. In this dataset, the
factor Breed is regarded as a fixed effect whereas the influence of the animal
on a single measurement is considered as a random effect. Hence, body weight𝑦𝑖𝑗𝑘 which corresponds to repeated observation 𝑘 of animal 𝑗 from breed 𝑖 can
be written as

𝑦𝑖𝑗𝑘 = 𝑏0 + 𝑏𝑖 + 𝛼𝑗 + 𝑒𝑖𝑗𝑘 (5.9)

where 𝑏0 is the intercept, 𝑏𝑖 is the fixed effect of breed 𝑖, 𝛼𝑗 is the random effect
of animal 𝑗 and 𝑒𝑖𝑗𝑘 is the random residual. In matrix-vector notation equation
(5.9) takes the form

y = Xb + Z𝛼 + e (5.10)

where y is the vector of length 𝑛 containing responses, b the vector of length𝑝 with covariates, 𝛼 the vector of length 𝑞 with random effects related to the
repeated observations for an animal and e is the vector of length 𝑛 with random
residuals. The matrices X and Z relate the different effects to the observations.

From equation (5.9), we cannot really tell any difference to a fixed linear effects
model. Only with the specification of the distributional properties of all the
model components, it becomes clear that equation (5.9) specifies a mixed model.
The mixed model is characterized by two random variables

1. a 𝑞-dimensional vector of random effects represented by the random vari-
able 𝛼∗

2. a 𝑛-dimensional vector of responses represented by the random variable𝒴∗
The datasets to be analysed with mixed models contain observations, denoted by
the vector y. Values 𝛼 of 𝛼∗ are not observed and hence are unknown. When
specifying the distributional properties of a mixed model, the unconditional
distribution of 𝛼∗ and the conditional distribution of (𝒴∗|𝛼∗) are given. The
description of these distributions involve the form of the distribution and the
values of the distributional parameters. The observations of the responses and
of the covariates are used to estimate these parameters. The unconditional
distribution of 𝛼∗ and the conditional distribution of (𝒴∗|𝛼∗) are both assumed
to be multivariate normal distributions.
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(𝒴∗|𝛼∗) ∼ 𝒩(Xb + Z𝛼, 𝜎2 ∗ 𝐼)𝛼∗ ∼ 𝒩(0, Σ) (5.11)

The analysis of the dataset shown in Table 5.3 can be analysed using the function
lmer() of package lme4.
mlem__rep_obs_breed <- lme4::lmer(`Body Weight` ~ Breed + (1|Animal),

data = tbl_rep_obs_breed)
summary(mlem__rep_obs_breed)

## Linear mixed model fit by REML ['lmerMod']
## Formula: `Body Weight` ~ Breed + (1 | Animal)
## Data: tbl_rep_obs_breed
##
## REML criterion at convergence: 61.8
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.3714 -0.5383 0.0640 0.3213 1.4305
##
## Random effects:
## Groups Name Variance Std.Dev.
## Animal (Intercept) 426.21 20.645
## Residual 22.98 4.794
## Number of obs: 12, groups: Animal, 4
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 466.59 20.83 22.400
## BreedLimousin 59.44 25.51 2.330
## BreedSimmental 28.30 29.46 0.961
##
## Correlation of Fixed Effects:
## (Intr) BrdLms
## BreedLimosn -0.816
## BreedSmmntl -0.707 0.577

The variance components obtained by lme4::lmer() are the same as what
we have seen before as results of ANOVA. This is because, we are looking at
balanced data.
In livestock breeding, linear mixed effects models are of interest when it comes
to the evaluation of the genetic potential of selection candidates. From quanti-
tative genetics, we know that parents with a superior genetic potential produce
offspring which are better on average compared to the mean performance of ani-
mals from the same generation. The genetic potential of an animal is quantified



5.2. SIRE MODEL 59

by a concept which is referred to as breeding value. In what follows, we describe
how breeding values for animals can be predicted using mixed models.

5.2 Sire Model
In a first application of mixed models for predicting breeding values, observation
of daughter performance records were used to predict breeding values for sires.
Assuming that sires are unrelated, i.e. they do not share any common ancestors,
sire breeding values can be predicted similarly to the analysis of the repeated
observations dataset. A possible mixed model for such an analysis might look
as follows

y = Xb + Zs + e (5.12)

where y is the vector of length 𝑛 with responses, b is the vector of length 𝑝 with
fixed effects, s is the vector of length 𝑞 with sire breeding values and e is the
vector of length 𝑛 with random residuals. Matrices X and Z are design matrices
which relate the observations to the respective effects.
A dataset that can be used to be analysed with a model such as shown in
equation (5.12) is given in by the milk dataset of the package pedigreemm. The
first six lines of this dataset are shown in Table 5.5.

Table 5.5: First six lines of milk dataset from package pedigreemm

id lact herd sire dim milk fat prot scs
6489 1 89 2 286 18420 784 607 2.01
6489 2 89 2 305 21592 954 644 1.64
6489 3 89 2 203 15834 779 490 1.86
6490 1 89 2 281 20683 785 610 2.71
6490 2 89 2 277 20050 841 582 2.83
6490 3 89 2 289 21891 884 650 2.63

In Table 5.5 the columns milk, fat, prot and scs stand for milk yield, fat yield,
protein yield and somatic cell score for a given lactiation of a cow, respectively
and can be selected as response variables. The columns lact, herd and dim are
lactation, herd number and days in milk, respectively and these columns can be
used as fixed effects or covariates. The sire column is used for the random sire
breeding value effect in the model.
As already stated, if we assume that these sires are unrelated, the dataset can
be analysed as shown above using the function lme4::lmer.
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