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5.3 Pedigree BLUP
In real datasets, the assumption of unrelated sires is unrealistic, because the
selection process favors that male offspring of a given sire will be selected as
sires again. As a consequence, the random sire effects are not independent. The
dependence structure between the sire effects must be considered in the analysis.
The sire model can still be written as shown in equation (5.12), but the variance-
covariance matrix of the random sire effects (s) is no longer an identity matrix
I times a common variance component 𝜎2𝑠 , but it can be written as𝑣𝑎𝑟(s) = A𝑠 ∗ 𝜎2𝑠 (5.13)

where A𝑠 is the sire relationship matrix. In a dataset with 𝑞 sires, the matrix
A𝑠 has dimensions 𝑞 × 𝑞 and it contains the proportions of sire effects that are
passed from father to son. Together with the sire variance 𝜎2𝑠 this defines the
variance-covariance structure of all sire effects. As an example, we can express
the covariance 𝑐𝑜𝑣(𝑠𝑖, 𝑠𝑘) of the sire effects between son 𝑖 and its sire 𝑘, as𝑐𝑜𝑣(𝑠𝑖, 𝑠𝑘) = 1/2 ∗ 𝜎2𝑠 (5.14)

where the factor 1/2 stems from the fact that sire 𝑘 passes half of its genetic
potential to its son 𝑖. Relating this single covariance back to the variance-
covariance matrix 𝐴𝑠 means that elements (𝑖, 𝑘) and (𝑘, 𝑖) are both 1/2.

5.3.1 Example Dataset
An application of the sire model is shown in the dataset given in Table 5.6 which
is taken from [Mrode, 2005]

Table 5.6: Pre-weaning Gain in kg for five beef animals

Animal Sire Sex WWG
4 1 M 4.5
5 3 F 2.9
6 1 F 3.9
7 4 M 3.5
8 3 M 5.0

The objective is to predict breeding values for sires 1, 3 and 4 based on the
above dataset. The trait pre-weaning gain (WWG) is taken as response and Sex
is assumed to be the only fixed effect. The following values for the variance
components are assumed: 𝜎2𝑠 = 5 and 𝜎2𝑒 = 55.
This type of model where the structure of the variance-covariance matrix of the
random effect is given by a pedigree cannot be fit by the package lme4. An
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extension of lme4 is given in the R-package pedigreemm. In pedigreemm it is
possible to specify the variance-covariance structure via a pedigree. For our
example of the dataset in Table 5.6, this can be done as follows
library(pedigreemm)
ped_sire <- pedigree(sire = c(rep(NA,2), 1), dam = rep(NA,3),

label = as.character(c(1,3,4)))
lmem_sire <- pedigreemm(
formula = WWG ~ Sex + (1 | Sire),
data = tbl_sire_model,
pedigree = list(Sire = ped_sire)

)
(smry_lmem_sire <- summary(lmem_sire))

## Linear mixed model fit by REML ['lmerpedigreemm']
## Formula: WWG ~ Sex + (1 | Sire)
## Data: tbl_sire_model
##
## REML criterion at convergence: 8.5
##
## Scaled residuals:
## Min 1Q Median 3Q Max
## -1.1180 -0.6708 0.2236 0.6708 0.8944
##
## Random effects:
## Groups Name Variance Std.Dev.
## Sire (Intercept) 0.0000 0.0000
## Residual 0.5556 0.7454
## Number of obs: 5, groups: Sire, 3
##
## Fixed effects:
## Estimate Std. Error t value
## (Intercept) 3.4000 0.5270 6.451
## SexM 0.9333 0.6804 1.372
##
## Correlation of Fixed Effects:
## (Intr)
## SexM -0.775

The output of pedigreemm::pedigreemm() is equivalent to the one given by
lme4::lmer(). From this we can see that the sire variance results in an estimate
of 0. This does not correspond to the value that, we specified as an assumption.
This has two reasons. The assumed sire variance was not estimated from the
small dataset in Table 5.6, but from a larger dataset not shown here. The
second reason is that it is not possible with pedigreemm::pedigreemm() to use
an assumed variance component as input. The breeding values for the sires can
be obtained by the function call
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ranef(lmem_sire)

## $Sire
## (Intercept)
## 1 0
## 3 0
## 4 0

The predicted sire breeding values are also all equal to 0. The reason for this
is that the sire variance component was estimated to be 0. Hence for small
datasets, pedigreemm::pedigreemm() cannot be used.

5.3.2 Mixed Model Equations
In a series of papers ([Henderson, 1953], [Henderson, 1963] and [Henderson,
1975]) which are summarized in [Henderson, 1982], a technique called mixed
model equations was developed to solve for solutions of predicted values in a
linear mixed effects model. For a given linear mixed effects model with 𝑣𝑎𝑟(𝑒) =𝐼 ∗ 𝜎2𝑒 and 𝑣𝑎𝑟(𝑠) = 𝐴𝑠 ∗ 𝜎2𝑠

y = Xb + Zs + e (5.15)

the solutions for the fixed effects estimates and the predicted values of the
random effects can be obtained by solving the following set of equations.

[ 𝑋𝑇 𝑋 𝑋𝑇 𝑍𝑍𝑇 𝑋 𝑍𝑇 𝑍 + 𝜆𝐴−1𝑠 ] [ ̂𝑏 ̂𝑠 ] = [ 𝑋𝑇 𝑦𝑍𝑇 𝑦 ] (5.16)

where 𝜆 = 𝜎2𝑒/𝜎2𝑠 . For our example the matrices 𝑋 and 𝑍 are defined as

𝑋 = ⎡⎢⎢⎢⎣
0 11 01 00 10 1

⎤⎥⎥⎥⎦
and

𝑍 = ⎡⎢⎢⎢⎣
1 0 00 1 01 0 00 0 10 1 0

⎤⎥⎥⎥⎦
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The matrix 𝐴−1𝑠 can be obtained by calling the function pedigreemm::getAinv()
on the defined sire pedigree.
mat_Ainv <- pedigreemm::getAInv(ped = ped_sire)

That results in

𝐴−1𝑠 = ⎡⎢⎣ 1.33333333333333 0 −0.6666666666666670 1 0−0.666666666666667 0 1.33333333333333 ⎤⎥⎦
The vector 𝑦 corresponds to the vector of observations. With that we can solve
the mixed model equations.
For the fixed effects we get

Table 5.7: Solutions for fixed Effect of Sex

Sex Solution
F 3.381986
M 4.335671

For the random sire breeding values, we get

Table 5.8: Solutions for random Breeding Values of Sires

Sire Solution
1 0.0220022
3 0.0140264
4 -0.0430418
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