Problem 1: Measurement Unit

The measurement unit has an influence on the results of a regression model. This is demonstrated by changing the unit for Breast Circumference (BC) from centimeters to meters.

Tasks

Your Solution

  • Use the function readr::read_csv() to read the data
  • Divide all values in column Breast Circumference by 100
  • Run the regression using lm()
  • Comparison of results

Problem 2: Significance Level

Do the same type of comparison of regression modelling results when changing the measurement unit for the variable HEI in the complete dataset given in

https://charlotte-ngs.github.io/asmss2022/data/asm_bw_mult_reg.csv.

Tasks

  • Run the same regression model as in Problem 1 of Exercise 1
  • Convert the measurement unit for the variable HEI from centimeter to meter
  • Compare the results of the two regression models with a special focus on the significance level

Your Solution

  • The same regression model as in Problem 1 of Exercise 1
  • Convert the values in column HEI from centimeter to meter
  • Fit again a multiple regression model
  • Compare the results

Latest Changes: 2022-03-04 11:36:35 (pvr)

LS0tCnRpdGxlOiBBcHBsaWVkIFN0YXRpc3RpY2FsIE1ldGhvZHMgLSBOb3RlYm9vayAyCmF1dGhvcjogUGV0ZXIgdm9uIFJvaHIKZGF0ZTogMjAyMi0wMi0yOApvdXRwdXQ6IGh0bWxfbm90ZWJvb2sKLS0tCgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgoKYGBge3IgZXgwMi1wMDEtc2V0dXAsIGVjaG89RkFMU0UsIGV2YWw9VFJVRSwgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRX0KIyBkZWZpbmUgZGF0YSBkaXJlY3RvcnkgZGVwZW5kaW5nIG9uIG9ubGluZSBzdGF0dXMKaWYgKHBhcmFtcyRpc29ubGluZSl7CiAgc19kYXRhX2RpciA8LSAiaHR0cHM6Ly9jaGFybG90dGUtbmdzLmdpdGh1Yi5pby9hc21zczIwMjIvZGF0YSIKfSBlbHNlIHsKICBzX2RhdGFfZGlyIDwtIGZpbGUucGF0aChoZXJlOjpoZXJlKCksICJkb2NzIiwgImRhdGEiKQp9CnNfZGF0YV9wYXRoIDwtIGZpbGUucGF0aChzX2RhdGFfZGlyLCAiYXNtX2J3X211bHRfcmVnLmNzdiIpCnNfZGF0YV9id19iY19wYXRoIDwtIGZpbGUucGF0aChzX2RhdGFfZGlyLCAiYXNtX2J3X2JjX3JlZy5jc3YiKQojIHdyaXRlIHRoZSBkZWZhdWx0IG9uZSB2YXJpYWJsZSByZWdyZXNzaW9uLCBpZiB3ZSBhcmUgbm90IG9ubGluZQppZiAoIXBhcmFtcyRpc29ubGluZSl7CiAgdGJsX211bHQgPC0gcmVhZHI6OnJlYWRfY3N2KGZpbGUgPSBzX2RhdGFfcGF0aCkKICB0YmxfYndfYmMgPC0gZHBseXI6OnNlbGVjdCh0YmxfbXVsdCwgQW5pbWFsLCBgQnJlYXN0IENpcmN1bWZlcmVuY2VgLCBgQm9keSBXZWlnaHRgKQogIGlmICghZnM6OmZpbGVfZXhpc3RzKHBhdGggPSBzX2RhdGFfYndfYmNfcGF0aCkpCiAgICByZWFkcjo6d3JpdGVfY3N2KHRibF9id19iYywgZmlsZSA9IHNfZGF0YV9id19iY19wYXRoKQp9CnRibF9id19iYyA8LSByZWFkcjo6cmVhZF9jc3YoZmlsZSA9IHNfZGF0YV9id19iY19wYXRoKQpuX25yX29icyA8LSBucm93KHRibF9id19iYykKYGBgCgoKIyMgUHJvYmxlbSAxOiBNZWFzdXJlbWVudCBVbml0ClRoZSBtZWFzdXJlbWVudCB1bml0IGhhcyBhbiBpbmZsdWVuY2Ugb24gdGhlIHJlc3VsdHMgb2YgYSByZWdyZXNzaW9uIG1vZGVsLiBUaGlzIGlzIGRlbW9uc3RyYXRlZCBieSBjaGFuZ2luZyB0aGUgdW5pdCBmb3IgYEJyZWFzdCBDaXJjdW1mZXJlbmNlYCAoQkMpIGZyb20gY2VudGltZXRlcnMgdG8gbWV0ZXJzLiAKCiMjIyBUYXNrcwoKKiBSZWFkIHRoZSBvcmlnaW5hbCBkYXRhc2V0IHdpdGggQkMgYW5kIEJXIGZvciBgciBuX25yX29ic2AgYW5pbWFscy4gVGhlIGRhdGFzZXQgaXMgYXZhaWxibGUgYXMgY3N2LWZpbGUgdW5kZXI6IGByIHNfZGF0YV9id19iY19wYXRoYAoqIENvbnZlcnQgYWxsIHZhbHVlcyBvZiBCQyBmcm9tIGNlbnRpbWV0ZXJzIHRvIG1ldGVycwoqIFJ1biB0aGUgcmVncmVzc2lvbiBtb2RlbCB1c2luZyBgbG0oKWAKKiBDb21wYXJlIHRoZSByZXN1bHRzIHdpdGggdGhlIHJlc3VsdHMgZnJvbSB0aGUgb3JpZ2luYWwgbW9kZWwKCiMjIyBZb3VyIFNvbHV0aW9uCgoqIFVzZSB0aGUgZnVuY3Rpb24gYHJlYWRyOjpyZWFkX2NzdigpYCB0byByZWFkIHRoZSBkYXRhCgpgYGB7cn0KCmBgYAoKKiBEaXZpZGUgYWxsIHZhbHVlcyBpbiBjb2x1bW4gYEJyZWFzdCBDaXJjdW1mZXJlbmNlYCBieSAxMDAKCmBgYHtyfQoKYGBgCgoqIFJ1biB0aGUgcmVncmVzc2lvbiB1c2luZyBgbG0oKWAKCmBgYHtyfQoKYGBgCgoqIENvbXBhcmlzb24gb2YgcmVzdWx0cwoKCgoKCiMjIFByb2JsZW0gMjogU2lnbmlmaWNhbmNlIExldmVsCkRvIHRoZSBzYW1lIHR5cGUgb2YgY29tcGFyaXNvbiBvZiByZWdyZXNzaW9uIG1vZGVsbGluZyByZXN1bHRzIHdoZW4gY2hhbmdpbmcgdGhlIG1lYXN1cmVtZW50IHVuaXQgZm9yIHRoZSB2YXJpYWJsZSBIRUkgaW4gdGhlIGNvbXBsZXRlIGRhdGFzZXQgZ2l2ZW4gaW4KCmBodHRwczovL2NoYXJsb3R0ZS1uZ3MuZ2l0aHViLmlvL2FzbXNzMjAyMi9kYXRhL2FzbV9id19tdWx0X3JlZy5jc3ZgLiAKCiMjIyBUYXNrcwoKKiBSdW4gdGhlIHNhbWUgcmVncmVzc2lvbiBtb2RlbCBhcyBpbiBQcm9ibGVtIDEgb2YgRXhlcmNpc2UgMQoqIENvbnZlcnQgdGhlIG1lYXN1cmVtZW50IHVuaXQgZm9yIHRoZSB2YXJpYWJsZSBIRUkgZnJvbSBjZW50aW1ldGVyIHRvIG1ldGVyCiogQ29tcGFyZSB0aGUgcmVzdWx0cyBvZiB0aGUgdHdvIHJlZ3Jlc3Npb24gbW9kZWxzIHdpdGggYSBzcGVjaWFsIGZvY3VzIG9uIHRoZSBzaWduaWZpY2FuY2UgbGV2ZWwKCgojIyMgWW91ciBTb2x1dGlvbgoKKiBUaGUgc2FtZSByZWdyZXNzaW9uIG1vZGVsIGFzIGluIFByb2JsZW0gMSBvZiBFeGVyY2lzZSAxCgpgYGB7cn0KCmBgYAoKKiBDb252ZXJ0IHRoZSB2YWx1ZXMgaW4gY29sdW1uIEhFSSBmcm9tIGNlbnRpbWV0ZXIgdG8gbWV0ZXIKCmBgYHtyfQoKYGBgCgoqIEZpdCBhZ2FpbiBhIG11bHRpcGxlIHJlZ3Jlc3Npb24gbW9kZWwKCmBgYHtyfQoKYGBgCgoqIENvbXBhcmUgdGhlIHJlc3VsdHMKCgoKCgoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzPSdhc2lzJ30KY2F0KCdcbi0tLVxuXG4gX0xhdGVzdCBDaGFuZ2VzOiAnLCBmb3JtYXQoU3lzLnRpbWUoKSwgJyVZLSVtLSVkICVIOiVNOiVTJyksICcgKCcsIFN5cy5pbmZvKClbJ3VzZXInXSwgJylfXG4nLCBzZXAgPSAnJykKYGBgCiAK