Problem 1: Helmert Contrasts
Use the dataset of Body Weight
and Breed
to fit a linear model of Body Weight
on Breed
. The aim of this exercise is to use the Helmert
-contrasts instead of the defautl Treatment
contrasts. What are the estimable functions used in the Helmert
-Contrasts and what are the effects that are reported for the different levels of the factor Breed
? Verify your answer by comparing estimable functions of solutions of the least squares normal equations to the effects of lm()
.
The dataset is available under
https://charlotte-ngs.github.io/asmss2022/data/asm_bw_flem.csv
Hint
- Use
options(contrasts = c("contr.helmert", "contr.helmert"))
to change the default contrasts to the desired Helmert
-Contrasts
Your Solution
Compute solutions to least squares normal equation
Change contrasts from default to Helmert
Find estimable functions associated to Helmert contrasts
Check back with effects of lm()
Problem 2: Simulation
Use the results of the regression of Body Weight
on Breast Circumference
and simulate three datasets with 10, 30 and 100 observations respectively. What is the number of observations required to obtain the same regression results from the simulated dataset that you used in the simulation?
The original dataset is available under:
https://charlotte-ngs.github.io/asmss2022/data/asm_bw_flem.csv
Your Solution
Run the regression analysis of Body Weight
on Breast Circumference
Create the three datasets
Analyse each of the datasets using lm()
Check the obtained results, whether they match the input from the simulation
Latest Changes: 2022-04-04 07:36:02 (pvr)
LS0tCnRpdGxlOiBBcHBsaWVkIFN0YXRpc3RpY2FsIE1ldGhvZHMgLSBOb3RlYm9vayA1CmF1dGhvcjogUGV0ZXIgdm9uIFJvaHIKZGF0ZTogJzIwMjItMDMtMjYnCm91dHB1dDogaHRtbF9ub3RlYm9vawpwYXJhbXM6CiAgZG9jdHlwZToKICAgIGxhYmVsOiBEb2N1bWVudCBUeXBlCiAgICB2YWx1ZTogc29sdXRpb24KICAgIGNob2ljZXM6CiAgICAtIGV4ZXJjaXNlCiAgICAtIHNvbHV0aW9uCiAgICAtIG5vdGVib29rCi0tLQoKCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQpgYGAKCgpgYGB7ciwgZWNobz1GQUxTRX0Kc19leDA1cDAxX2RhdGFfcGF0aCA8LSAiaHR0cHM6Ly9jaGFybG90dGUtbmdzLmdpdGh1Yi5pby9hc21zczIwMjIvZGF0YS9hc21fYndfZmxlbS5jc3YiCiMgc19leDA1cDAxX2RhdGFfcGF0aCA8LSBmaWxlLnBhdGgoaGVyZTo6aGVyZSgpLCAiZG9jcyIsICJkYXRhIiwgImFzbV9id19mbGVtLmNzdiIpCmBgYAoKIyMgUHJvYmxlbSAxOiBIZWxtZXJ0IENvbnRyYXN0cwpVc2UgdGhlIGRhdGFzZXQgb2YgYEJvZHkgV2VpZ2h0YCBhbmQgYEJyZWVkYCB0byBmaXQgYSBsaW5lYXIgbW9kZWwgb2YgYEJvZHkgV2VpZ2h0YCBvbiBgQnJlZWRgLiBUaGUgYWltIG9mIHRoaXMgZXhlcmNpc2UgaXMgdG8gdXNlIHRoZSBgSGVsbWVydGAtY29udHJhc3RzIGluc3RlYWQgb2YgdGhlIGRlZmF1dGwgYFRyZWF0bWVudGAgY29udHJhc3RzLiBXaGF0IGFyZSB0aGUgZXN0aW1hYmxlIGZ1bmN0aW9ucyB1c2VkIGluIHRoZSBgSGVsbWVydGAtQ29udHJhc3RzIGFuZCB3aGF0IGFyZSB0aGUgZWZmZWN0cyB0aGF0IGFyZSByZXBvcnRlZCBmb3IgdGhlIGRpZmZlcmVudCBsZXZlbHMgb2YgdGhlIGZhY3RvciBgQnJlZWRgPyBWZXJpZnkgeW91ciBhbnN3ZXIgYnkgY29tcGFyaW5nIGVzdGltYWJsZSBmdW5jdGlvbnMgb2Ygc29sdXRpb25zIG9mIHRoZSBsZWFzdCBzcXVhcmVzIG5vcm1hbCBlcXVhdGlvbnMgdG8gdGhlIGVmZmVjdHMgb2YgYGxtKClgLgoKVGhlIGRhdGFzZXQgaXMgYXZhaWxhYmxlIHVuZGVyCgpgYGB7ciwgZWNobz1GQUxTRX0KY2F0KHNfZXgwNXAwMV9kYXRhX3BhdGgsICJcbiIpCmBgYAoKIyMjIEhpbnQKCiogVXNlIGBvcHRpb25zKGNvbnRyYXN0cyA9IGMoImNvbnRyLmhlbG1lcnQiLCAiY29udHIuaGVsbWVydCIpKWAgdG8gY2hhbmdlIHRoZSBkZWZhdWx0IGNvbnRyYXN0cyB0byB0aGUgZGVzaXJlZCBgSGVsbWVydGAtQ29udHJhc3RzCgoKIyMjIFlvdXIgU29sdXRpb24KCiogQ29tcHV0ZSBzb2x1dGlvbnMgdG8gbGVhc3Qgc3F1YXJlcyBub3JtYWwgZXF1YXRpb24KCiogQ2hhbmdlIGNvbnRyYXN0cyBmcm9tIGRlZmF1bHQgdG8gSGVsbWVydAoKKiBGaW5kIGVzdGltYWJsZSBmdW5jdGlvbnMgYXNzb2NpYXRlZCB0byBIZWxtZXJ0IGNvbnRyYXN0cwoKKiBDaGVjayBiYWNrIHdpdGggZWZmZWN0cyBvZiBgbG0oKWAKCgoKCgpgYGB7ciwgZWNobz1GQUxTRX0KdmVjX25vYnMgPC0gYygxMCwzMCwxMDApCnNfZXgwNXAwMl9kYXRhX3BhdGggPC0gImh0dHBzOi8vY2hhcmxvdHRlLW5ncy5naXRodWIuaW8vYXNtc3MyMDIyL2RhdGEvYXNtX2J3X2ZsZW0uY3N2IgojIHNfZXgwNXAwMl9kYXRhX3BhdGggPC0gZmlsZS5wYXRoKGhlcmU6OmhlcmUoKSwgImRvY3MiLCAiZGF0YSIsICJhc21fYndfZmxlbS5jc3YiKQpgYGAKCiMjIFByb2JsZW0gMjogU2ltdWxhdGlvbgpVc2UgdGhlIHJlc3VsdHMgb2YgdGhlIHJlZ3Jlc3Npb24gb2YgYEJvZHkgV2VpZ2h0YCBvbiBgQnJlYXN0IENpcmN1bWZlcmVuY2VgIGFuZCBzaW11bGF0ZSB0aHJlZSBkYXRhc2V0cyB3aXRoIGByIHZlY19ub2JzWzFdYCwgYHIgdmVjX25vYnNbMl1gIGFuZCBgciB2ZWNfbm9ic1szXWAgb2JzZXJ2YXRpb25zIHJlc3BlY3RpdmVseS4gV2hhdCBpcyB0aGUgbnVtYmVyIG9mIG9ic2VydmF0aW9ucyByZXF1aXJlZCB0byBvYnRhaW4gdGhlIHNhbWUgcmVncmVzc2lvbiByZXN1bHRzIGZyb20gdGhlIHNpbXVsYXRlZCBkYXRhc2V0IHRoYXQgeW91IHVzZWQgaW4gdGhlIHNpbXVsYXRpb24/IAoKVGhlIG9yaWdpbmFsIGRhdGFzZXQgaXMgYXZhaWxhYmxlIHVuZGVyOgoKYGBge3IsIGVjaG89RkFMU0V9CmNhdChzX2V4MDVwMDJfZGF0YV9wYXRoLCAiXG4iKQpgYGAKCiMjIyBZb3VyIFNvbHV0aW9uCgoqIFJ1biB0aGUgcmVncmVzc2lvbiBhbmFseXNpcyBvZiBgQm9keSBXZWlnaHRgIG9uIGBCcmVhc3QgQ2lyY3VtZmVyZW5jZWAKCiogQ3JlYXRlIHRoZSB0aHJlZSBkYXRhc2V0cwoKKiBBbmFseXNlIGVhY2ggb2YgdGhlIGRhdGFzZXRzIHVzaW5nIGBsbSgpYAoKKiBDaGVjayB0aGUgb2J0YWluZWQgcmVzdWx0cywgd2hldGhlciB0aGV5IG1hdGNoIHRoZSBpbnB1dCBmcm9tIHRoZSBzaW11bGF0aW9uCgoKCgoKCgpgYGB7ciwgZWNobz1GQUxTRSwgcmVzdWx0cz0nYXNpcyd9CmNhdCgnXG4tLS1cblxuIF9MYXRlc3QgQ2hhbmdlczogJywgZm9ybWF0KFN5cy50aW1lKCksICclWS0lbS0lZCAlSDolTTolUycpLCAnICgnLCBTeXMuaW5mbygpWyd1c2VyJ10sICcpX1xuJywgc2VwID0gJycpCmBgYAogCg==