Problem 1: Milk Dataset
Use the dataset milk
from package pedigreemm
and fit a sire model to each of the response variables (milk
, fat
, prot
and scs
) in the data. The dataset can be loaded using the command pedigreemm::milk
. The other variables like lact
and herd
can be used as fixed effects. The sire
column is used as a random effect. For this analysis, we assume that sires are unrelated.
Your Tasks
- Analyse the
milk
dataset from package pedigreemm
using the function lme4::lmer()
for all given response variables. You can use the same model for each of the responses.
- Compute the estimated heritability for each response variable, using the fact that the heritability \(h^2\) can be computed from the variance \(\sigma_s^2\) of the sire effects and the phenotypic variance \(\sigma_p^2\) with the formula
\[h^2 = \frac{4* \sigma_s^2}{\sigma_p^2} \]
- Compute the summary statistic using the function
summary()
of all the predicted sire breeding values. Solutions for the sire breeding values are obtained using the function ranef()
Your Solution
- Assign milk dataset to a tibble
- Analyse the data for each of the responses
- Compute estimated heritability
- Obtain summary statistics for predicted sire breeding values
Latest Changes: 2022-05-06 07:35:37 (pvr)
LS0tCnRpdGxlOiBBcHBsaWVkIFN0YXRpc3RpY2FsIE1ldGhvZHMgLSBOb3RlYm9vayA5CmF1dGhvcjogUGV0ZXIgdm9uIFJvaHIKZGF0ZTogJzIwMjItMDUtMDInCm91dHB1dDogaHRtbF9ub3RlYm9vawpwYXJhbXM6CiAgZG9jdHlwZToKICAgIGxhYmVsOiBEb2N1bWVudCBUeXBlCiAgICB2YWx1ZTogc29sdXRpb24KICAgIGNob2ljZXM6CiAgICAtIGV4ZXJjaXNlCiAgICAtIHNvbHV0aW9uCiAgICAtIG5vdGVib29rCiAgaXNvbmxpbmU6CiAgICBsYWJlbDogT25saW5lICh5L24pCiAgICB2YWx1ZTogdHJ1ZQogICAgY2hvaWNlczoKICAgIC0gdHJ1ZQogICAgLSBmYWxzZQotLS0KCgoKYGBge3Igc2V0dXAsIGluY2x1ZGU9RkFMU0V9CmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSkKYGBgCgoKIyMgUHJvYmxlbSAxOiBNaWxrIERhdGFzZXQKVXNlIHRoZSBkYXRhc2V0IGBtaWxrYCBmcm9tIHBhY2thZ2UgYHBlZGlncmVlbW1gIGFuZCBmaXQgYSBzaXJlIG1vZGVsIHRvIGVhY2ggb2YgdGhlIHJlc3BvbnNlIHZhcmlhYmxlcyAoYG1pbGtgLCBgZmF0YCwgYHByb3RgIGFuZCBgc2NzYCkgaW4gdGhlIGRhdGEuIFRoZSBkYXRhc2V0IGNhbiBiZSBsb2FkZWQgdXNpbmcgdGhlIGNvbW1hbmQgYHBlZGlncmVlbW06Om1pbGtgLiBUaGUgb3RoZXIgdmFyaWFibGVzIGxpa2UgYGxhY3RgIGFuZCBgaGVyZGAgY2FuIGJlIHVzZWQgYXMgZml4ZWQgZWZmZWN0cy4gVGhlIGBzaXJlYCBjb2x1bW4gaXMgdXNlZCBhcyBhIHJhbmRvbSBlZmZlY3QuIEZvciB0aGlzIGFuYWx5c2lzLCB3ZSBhc3N1bWUgdGhhdCBzaXJlcyBhcmUgdW5yZWxhdGVkLiAKCiMjIyBZb3VyIFRhc2tzCiogQW5hbHlzZSB0aGUgYG1pbGtgIGRhdGFzZXQgZnJvbSBwYWNrYWdlIGBwZWRpZ3JlZW1tYCB1c2luZyB0aGUgZnVuY3Rpb24gYGxtZTQ6OmxtZXIoKWAgZm9yIGFsbCBnaXZlbiByZXNwb25zZSB2YXJpYWJsZXMuIFlvdSBjYW4gdXNlIHRoZSBzYW1lIG1vZGVsIGZvciBlYWNoIG9mIHRoZSByZXNwb25zZXMuCiogQ29tcHV0ZSB0aGUgZXN0aW1hdGVkIGhlcml0YWJpbGl0eSBmb3IgZWFjaCByZXNwb25zZSB2YXJpYWJsZSwgdXNpbmcgdGhlIGZhY3QgdGhhdCB0aGUgaGVyaXRhYmlsaXR5ICRoXjIkIGNhbiBiZSBjb21wdXRlZCBmcm9tIHRoZSB2YXJpYW5jZSAkXHNpZ21hX3NeMiQgb2YgdGhlIHNpcmUgZWZmZWN0cyBhbmQgdGhlIHBoZW5vdHlwaWMgdmFyaWFuY2UgJFxzaWdtYV9wXjIkIHdpdGggdGhlIGZvcm11bGEgCgokJGheMiA9IFxmcmFjezQqIFxzaWdtYV9zXjJ9e1xzaWdtYV9wXjJ9ICQkCgoqIENvbXB1dGUgdGhlIHN1bW1hcnkgc3RhdGlzdGljIHVzaW5nIHRoZSBmdW5jdGlvbiBgc3VtbWFyeSgpYCBvZiBhbGwgdGhlIHByZWRpY3RlZCBzaXJlIGJyZWVkaW5nIHZhbHVlcy4gU29sdXRpb25zIGZvciB0aGUgc2lyZSBicmVlZGluZyB2YWx1ZXMgYXJlIG9idGFpbmVkIHVzaW5nIHRoZSBmdW5jdGlvbiBgcmFuZWYoKWAKCiMjIyBZb3VyIFNvbHV0aW9uCgoqIEFzc2lnbiBtaWxrIGRhdGFzZXQgdG8gYSB0aWJibGUKKiBBbmFseXNlIHRoZSBkYXRhIGZvciBlYWNoIG9mIHRoZSByZXNwb25zZXMKKiBDb21wdXRlIGVzdGltYXRlZCBoZXJpdGFiaWxpdHkKKiBPYnRhaW4gc3VtbWFyeSBzdGF0aXN0aWNzIGZvciBwcmVkaWN0ZWQgc2lyZSBicmVlZGluZyB2YWx1ZXMKCgoKCgoKCmBgYHtyLCBlY2hvPUZBTFNFLCByZXN1bHRzPSdhc2lzJ30KY2F0KCdcbi0tLVxuXG4gX0xhdGVzdCBDaGFuZ2VzOiAnLCBmb3JtYXQoU3lzLnRpbWUoKSwgJyVZLSVtLSVkICVIOiVNOiVTJyksICcgKCcsIFN5cy5pbmZvKClbJ3VzZXInXSwgJylfXG4nLCBzZXAgPSAnJykKYGBgCiAK