Fixed Linear Effects Models

Peter von Rohr

2022-03-07

Extension of Dataset on Body Weight

Animal	BC	Body Weight	BCS	HEI	Breed
1	176	471	5.0	161	Angus
2	177	463	4.2	121	Angus
3	178	481	4.9	157	Simmental
4	179	470	3.0	165	Angus
5	179	496	6.8	136	Simmental
6	180	491	4.9	123	Simmental
7	181	518	4.4	163	Limousin
8	182	511	4.4	149	Limousin
9	183	510	3.5	143	Limousin
10	184	541	4.7	130	Limousin

Include Breed into Model

- Breed has an influence on body weight
- Predictor variables must be numeric
- Breed must be converted to numeric code
- Assignment of codes to breeds is rather arbitrary

Breed Codes

Code	Breed		
1	Angus		
2	Limousin		
3	Simmental		

Modelling Effect of Breed

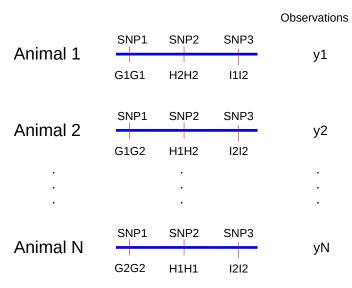
Simplification: "breed" is the only predictor
Expected body weight (y_i) for animal i

$$E(y_i) = b_0 + b_1 x_i$$

Problems

- Nothing wrong with previous model
- But the following relations might give a hint to some problems

 $E(BW Angus) = b_0 + b_1$ $E(BW Limousin) = b_0 + 2b_1$ $E(BW Simmental) = b_0 + 3b_1$


This means, for example, that

E(BW Limousin) - E(BW Angus) = E(BW Simmental) - E(BW Limousin) E(BW Simmental) - E(BW Angus) = 2[E(BW Limousin) - E(BW Angus)]

Consequences

- Allocation of numerical codes imposes relations between expected values
- Relations might be unreasonable
- Regression analysis only yields estimates for b₀ and b₁, effects of other breeds are determined
- Conclusion: regression on numerical codes of discrete variables are in most cases unreasonable
- Exception: Estimation of marker effects

Linear Regression Analysis for Genomic Data

