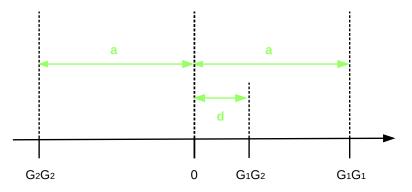
Regression On Dummy Variables

Peter von Rohr

2022-03-14

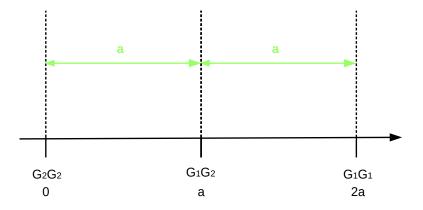
Why

- Discrete valued predictor variables like Breed
- Assignment of numeric codes to different breeds creates dependencies between expected values of different breeds


 $E(BW Angus) = b_0 + b_1$ $E(BW Limousin) = b_0 + 2b_1$ $E(BW Simmental) = b_0 + 3b_1$

Only estimates are b₀ and b₁
 Usually unreasonable, with one exception

Linear Regression in Genomic Analysis


- Regression on the number of positive alleles
- Estimate for slope b_1 corresponds to estimate of marker effect
- Review single-locus model from Quantitative Genetics

Single Locus Model

• Assuming $d = 0 \rightarrow$ genotypic value of G_1G_2 between homozygotes

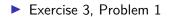
Modified Single Locus Model

- Transformation of regression on genotypes to regression on number of "positive" alleles (G₁)
- Relationships imposed by regression are meaningful

Relationships

Expected value for observation for a given genotype

$$E(G_2G_2) = b_0 + 0 * b_1$$


$$E(G_1G_2) = b_0 + 1 * b_1$$

$$E(G_1G_1) = b_0 + 2 * b_1$$

Differences

$$E(G_1G_2) - E(G_2G_2) = E(G_1G_1) - E(G_1G_2) = b_1$$
$$E(G_1G_1) - E(G_2G_2) = 2b_1$$

Example Dataset

Regression On Dummy Variables

- Cases that are not like genomic data
- Example with breeds
- Discrete independent variables are called Factors (e.g. Breed)
- Different values that a factor can take are called Levels
- Levels for our example factor Breed are: Angus, Limousin and Simmental

Levels To Independent Variables

Use "separate" x-variable for each level, hence each of the breeds

Breed	Independent Variable
Angus	x ₁
Limousin	x ₂
Simmental	x ₃

Model

Observation y_{ij} stands for birth weight for animal j in breed i

$$y_{11} = b_0 + b_1 * 1 + b_2 * 0 + b_3 * 0 + e_{11}$$

$$y_{12} = b_0 + b_1 * 1 + b_2 * 0 + b_3 * 0 + e_{12}$$

$$\cdots = \cdots$$

$$y_{33} = b_0 + b_1 * 0 + b_2 * 0 + b_3 * 1 + e_{33}$$

Sort animals according to breeds

Matrix - Vector Notation

$$\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$$