
Chapter 3

Fixed Linear Effects Models

3.1 Resources

Similarly to chapter 2, this chapter on fixed linear effects models (FLEM)
is based on the work of [Bühlmann and Mächler, 2016] and on the book [Searle,
1971].

3.2 Introduction

In chapter 2, we saw how linear regression analysis was used to describe and
to quantify the relationship between a response variable and between one or
more predictor variables. The type of analysis shown in chapter 2 is called
“regression analysis, because the response and the predictors are all continuous
variables. This means that the values of the variables in the dataset are all
floating-point numbers. For datasets where predictor variables are discrete, the
model is referred to as fixed linear effects model.
The reason why fixed linear effects models must be treated differently from re-
gression models can best be seen by looking at an extension of our example
dataset on body weight of some animals. Let us assume that besides the predic-
tors that we have used so far, we have the breed of the animal as an additional
information. Animals of different breeds have different body weights, hence we
expect that the breed of the animal has an effect on its body weight. The ques-
tion is how is it possible to integrate the breed of the animal into a model that
describes and quantifies the different influence factors on body weight. First,
we have a look at the extended dataset.
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26 CHAPTER 3. FIXED LINEAR EFFECTS MODELS

Table 3.1: Extended Dataset on Body Weight for 10 Animals

Animal Breast Circumference Body Weight BCS HEI Breed
1 176 471 5.0 161 Angus
2 177 463 4.2 121 Angus
3 178 481 4.9 157 Simmental
4 179 470 3.0 165 Angus
5 179 496 6.8 136 Simmental
6 180 491 4.9 123 Simmental
7 181 518 4.4 163 Limousin
8 182 511 4.4 149 Limousin
9 183 510 3.5 143 Limousin

10 184 541 4.7 130 Limousin

The extension in our dataset consists of the breed for each animal. With this
extension, the immediate question of how to measure “breed” arises. The breed
as it is in the dataset cannot be integreated into our model. It must be con-
verted into a numeric code. One possibility is to assign each breed to a number
according to how heavy an average animal of the breed is expected to be. Be-
cause this assignment is difficult to do, as the body weight of animals within a
given breed show a certain variation. For our example, the following assignment
of breeds to numeric codes is assumed.

Table 3.2: Assignment of Breeds to numeric Codes

Code Breed
1 Angus
2 Limousin
3 Simmental

For reasons of simplicity, we assume that the variable “breed” is the only pre-
dictor in a simple regression model𝐸(𝑦𝑖) = 𝑏0 + 𝑏1𝑥𝑖 (3.1)

where 𝐸(𝑦𝑖) stands for the expected value of body weight (𝑦𝑖) of animal 𝑖, 𝑏0 is
the intercept, 𝑥𝑖 corresponds to the numeric code of the breed of animal 𝑖 and𝑏1 is the regression coefficient for the breed code. The influence of the predictor
variable breed code on body weight could be tested with the hypothesis 𝑏1 = 0
which is done by the function lm() in R.
Although this analysis as described is permissible, it does come with a number
of problems which show that the assumptions behind this type of model are
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unrealistic. This can best be shown by looking at the expected values of body
weight (BW) for animals of the different breeds.

𝐸(BW Angus) = 𝑏0 + 𝑏1𝐸(BW Limousin) = 𝑏0 + 2𝑏1𝐸(BW Simmental) = 𝑏0 + 3𝑏1 (3.2)

This means, for example, that

𝐸(BW Limousin) − 𝐸(BW Angus) = 𝐸(BW Simmental) − 𝐸(BW Limousin)𝐸(BW Simmental) − 𝐸(BW Angus) = 2 [𝐸(BW Limousin) − 𝐸(BW Angus)]
(3.3)

Depending on the data, the relations shown in (3.3) might be quite unrealistic.
And even without data, only by the allocation of numerical codes to the different
breed, the consequences shown in (3.3) are forced on the analysis results. The
only real estimates that the analysis yields are the one of 𝑏0 and of 𝑏1. This will
also be the case, if different numerical codes are used for the different levels of
the variable.

The inherent difficulty with the analysis suggested above is the allocation of
numerical codes to non-quantitative variables such as breed. Yet such varibles
are of great interest in many scientific areas. Allocating numerical codes to such
variables involves at least two problems.

1. Often the assignment cannot be made in a reasonable way and is thereby
to a large extent an arbitrary process.

2. Making such allocations of numeric codes to different levels of a variable
imposes value differences on the categories of the variable such as shown
in equation (3.3).

The above state problems can best be solved by using a type of model that is
often referred to as regession on dummy (0, 1) variables. In the context here, we
are calling these models just fixed linear effect models. The description of these
models is deferred to section 3.4. We first describe an important exception in
which the application of a linear regression model on discrete variables is very
reasonable and has a wide range of applications.



28 CHAPTER 3. FIXED LINEAR EFFECTS MODELS

3.3 Linear Regression Analysis for Genomic
Data

The question why linear regression models can be applied to genomic data is
best answered by looking at the data. In general, genomic breeding values can
either be estimated using a two-step procedure or by a single step approach. At
the moment, we assume that we are in the first step of the two step approach
where we estimate the marker effects (𝑎-values) in a reference population or
alternatively we have a perfect data set with all animals genotyped and with
a phenotypic observation in a single step setting using a marker-effect model.
Both situations are equivalent when it comes to the structure of the underlying
dataset. Furthermore the same class of models can be used to analyse this type
of data.

3.3.1 Data

As already mentioned in section 3.3, we are assuming that each animal 𝑖 has
a phenotypic observation 𝑦𝑖 for a given trait of interest. Furthermore, every
animal has a genotype consisting of only three SNP markers. The marker loci
are called 𝐺, 𝐻 and 𝐼 . All markers have two alleles each. Figure 3.1 tries to
illustrate the structure of such a dataset used to estimate marker effects for the
three SNP.

As can be seen from Figure 3.1 each of the 𝑁 animals have known genotypes
for all three SNP markers and they all have a phenotypic observation 𝑦𝑖 (𝑖 =1, … , 𝑁). Because we are assuming each SNP marker to be bi-allelic, there are
only three possible marker genotypes at every marker position. Hence marker
genotypes are discrete entities with a fixed number of levels. Hence, in principle
the marker genotypes occur in discrete levels such as the breed of an animal from
dataset shown in Table 3.1. Because we are interested in the maker-effect at
each locus and the relationships shown in equation (3.3) which are imposed by
the use of a linear regression model on the discrete genotype variables, contain
the marker effects, the regression model can be used for the analysis of genomic
data. More details about the model will follow in section 3.3.2.

3.3.2 Model

The goal of our data analysis using the dataset described in section 3.3.1 is to
come up with estimates for maker effects at each SNP locus. The marker effects
can be used to predict genomic breeding values for all animals in our dataset.
The genomic breeding values will later be used to rank the animals. The ranking
of the animals according to the GBV is used to select the parents of the future
generation of livestock animals.
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Figure 3.1: Structure of Dataset To Estimate GBV
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It seams reasonable to distinguish between two different types of models. On the
one hand we need a model that describes the underlying genetic architecture
of the observed phenotypic values in our dataset. We are using a so-called
genetic model to describe the relationship between genetic background and
expressed phenotype of interest. On the other hand, we have to be able to get
estimates for marker effects and the GBVs which requires a statistical model.
Only with the latter we are going to be able to estimate unknown parameters
as a function of observed data. In the end, we will realize that the two models
are actually the same model but they are just different ways of looking at the
same structure of the underlying phenomena. These phenomena characterize
the relationship between genetic architecture of an animal and the expression
of a certain phenotypic trait in that same animal.

3.3.3 Genetic Model

The availability of genomic information for all animals in the dataset makes
it possible to use a polygenic model. In contrast to an infinitesimal model, a
polygenic model uses a finite number of discrete loci to model the genetic part
of an expressed phenotypic observation. From quantitative genetics (see e.g.
[Falconer and Mackay, 1996] for a reference) we know that every phenotypic
observation 𝑦 can be separated into a genetic part 𝑔 and an environmental part𝑒. This leads to the very simple genetic model

𝑦 = 𝑔 + 𝑒 (3.4)

The environmental part can be split into some fixed known systematic factors
such as herd, season effects, age and more and into a random unknown part.
The systematic factors are typically grouped into a vector of fixed effects. These
effects are currently not of interest and are ignored for the moment. To allow
for more flexibility, we include a general intercept term 𝜇 into the model. The
unknown environmental random part is usually called 𝜖. This allows to re-write
the simple genetic model in (3.4) as

𝑦 = 𝜇 + 𝑔 + 𝜖 (3.5)

The genetic component 𝑔 can be decomposed into contributions from the finite
number of loci that are influencing the observation 𝑦. In our example dataset
(see Figure 3.1) there are three loci1 that are assumed to have an effect on 𝑦.
Ignoring any interaction effects between the three loci and thereby assuming a

1Implicitly, we are treating the SNP-markers to be identical with the underlying QTL. But
based on the fact that we have very many SNPs spread over the complete genome, there will
always be SNP sufficiently close to every QTL that influences a certain trait. But in reality
the unknown QTL affect the traits and not the SNPs.
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completely additive model, the overall genetic effect 𝑔 can be decomposed into
the sum of the genotypic values of each locus. Hence

𝑔 = 𝑘∑𝑗=1 𝑔𝑗 (3.6)

where for our example 𝑘 is equal to three2.

Considering all SNP loci to be purely additive which means that we are ignoring
any dominance effects, the genotypic values 𝑔𝑗 at any locus 𝑗 can just take one
of the three values −𝑎𝑗, 0 or +𝑎𝑗 where 𝑎𝑗 corresponds to the 𝑎 value from the
mono-genic model. For our example dataset the genotypic value for each SNP
genotype is given in the following table.

Table 3.3: Genotypic Values For All Three SNP-Loci

SNP Locus Genotype Genotypic Value𝑆𝑁𝑃1 𝐺1𝐺1 𝑎1𝑆𝑁𝑃1 𝐺1𝐺2 0𝑆𝑁𝑃1 𝐺2𝐺2 −𝑎1𝑆𝑁𝑃2 𝐻1𝐻1 𝑎2𝑆𝑁𝑃2 𝐻1𝐻2 0𝑆𝑁𝑃2 𝐻2𝐻2 −𝑎2𝑆𝑁𝑃3 𝐼1𝐼1 𝑎3𝑆𝑁𝑃3 𝐼1𝐼2 0𝑆𝑁𝑃3 𝐼2𝐼2 −𝑎3
From the Table 3.3 we can see that always the allele with subscript 1 is taken
to be that with the positive effect. Combining the information from Table 3.3
together with the decomposition of the genotypic value 𝑔 in (3.6), we get

𝑔 = 𝑚𝑇 ⋅ 𝑎 (3.7)

where 𝑚 is an indicator vector taking values of −1, 0 and 1 depending on the
SNP marker genotype and 𝑎 is the vector of 𝑎 values for all SNP marker loci.
Combining the decomposition in (3.7) together with the basic genetic model in
(3.5), we get

𝑦 = 𝜇 + 𝑚𝑇 ⋅ 𝑎 + 𝜖 (3.8)
2In reality 𝑘 can be 1.5 ∗ 105 for some commercial SNP chip platforms. When working

with complete genomic sequences, 𝑘 can also be in the order of 3 ∗ 107.



32 CHAPTER 3. FIXED LINEAR EFFECTS MODELS

The result obtained in (3.5) is the fundamental decomposition of the phenotypic
observation 𝑦 into a genetic part represented by the SNP marker information
(𝑚) and an environmental part (𝜇 and 𝜖). The 𝑎 values are unknown and must
be estimated. The estimates of the 𝑎 values will then be used to predict the
GBVs. How this estimation procedure works is described in the next section
3.3.4.

3.3.4 Statistical Model

When looking at the fundamental decomposition given in the genetic model
presented in (3.8) from a statistics point of view, the model in (3.8) corresponds
to a linear model. In a linear model, the response is explained by a linear
function of the predictor variables plus a random error term.
Using the decomposition given in our genetic model (see equation (3.8)) for our
example dataset illustrated in Figure 3.1, every observation 𝑦𝑖 of animal 𝑖 can
be written as 𝑦𝑖 = 𝜇 + 𝑀𝑖 ⋅ 𝑎 + 𝜖𝑖 (3.9)

where

• 𝑦𝑖 is the observation of animal 𝑖
• 𝜇 is a general intercept term
• 𝑎 is a vector of unknown additive allele substitution effects (𝑎 values)
• 𝑀𝑖 is an indicator row vector encoding the SNP genotypes of animal 𝑖 and
• 𝜖𝑖 is the random unknown environmental term belonging to animal 𝑖

3.3.5 Genomic Regression Analysis

Although, the predictor variables in the model shown in (3.9) are discrete geno-
types which can take only three states, namely the three genotypes of a biallelic
locus, it is still possible to model such genomic data with a regression model.
The reason for this is that the chosen encoding of the three genotypes into values−1, 0 and 1 is biologically meaningful. This can be seen by looking at expecta-
tions of different phenotypic values. For reasons of simplicity, we assume that
the phenotypic value 𝑦 is only affected by a single bi-allelic locus 𝐺. Further-
more, locus 𝐺 has a purely additive effect on the observed phenotypic values.
Hence the genotypic values of the three genotypes 𝐺1𝐺1, 𝐺1𝐺2 and 𝐺2𝐺2 at
locus 𝐺 are 𝑎𝐺, 0 and −𝑎𝐺, respectively. Hence for three animals with three
different genotypes, the model (3.9) can be written as

Animal i with genotype 𝐺1𝐺1
Animal j with genotype 𝐺1𝐺2
Animal k with genotype 𝐺2𝐺2

⎫}⎬}⎭ 𝑦𝑖 = 𝜇 + 1 ∗ 𝑎𝐺 + 𝜖𝑖𝑦𝑗 = 𝜇 + 0 ∗ 𝑎𝐺 + 𝜖𝑗𝑦𝑘 = 𝜇 + (−1) ∗ 𝑎𝐺 + 𝜖𝑘 (3.10)
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From this we can see that the expected values of the phenotypic values can be
written as

𝐸(𝑦𝑖) = 𝜇 + 𝑎𝐺𝐸(𝑦𝑗) = 𝜇𝐸(𝑦𝑘) = 𝜇 − 𝑎𝐺
The differences between the expectations of the phenotypic values of animals
with different genotypes can now be written as𝐸(𝑦𝑖) − 𝐸(𝑦𝑗) = 𝐸(𝑦𝑗) − 𝐸(𝑦𝑘) = 𝑎𝐺
This difference corresponds to the allele substitution effect 𝑎𝐺 at locus 𝐺. Hence
the chosen encoding of the genotypes 𝐺1𝐺1, 𝐺1𝐺2 and 𝐺2𝐺2 as 1, 0 and −1
has an internal biological meaning and the regression coefficient of the observed
phenotypic values on the encoded genotypes provides the allele substitution
effect.

3.4 Regression On Dummy Variables

In general, both the response variable and the predictor variables of a regression
model are continuous variables. Examples of such variables are body weight
and breast circumference which are both measured and the measurements
are expressed as real numbers. In contrast to such a regression model, the
predictor variable Breed in the extended dataset given in Table 3.1 is a discrete
variable. That means, observations of such a variable can only take a certain
number of values. These values are determined by the nature of the variable. For
our example with the breeds of animals, the observed values can only come from
the existing breeds of that species from which the observations were generated.
The discussion of regression on dummy variables is fascilitated by the notioon
of factors and levels. This terminology is adapted from the literature of ex-
perimental design. In the study of the influence of an animals breed on its body
weight, we are interested in the extent to which each breed is associated to the
body weight. Thus we want to see whether a group of animals from a particular
breed show specific values for their body weights and whether these values are
different from the body weights of animals from a different breed.
The problem of discrete variables not being measureable is acknowledged by
the introduction of the terms “factor” and “levels”. Hence a discrete variable
is referred to as a “factor”. The possible values that a factor can take are
called “levels”. The concept of levels enables us to quantify differences between
the effects that different levels of a factor have on a certain response variable.
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Translating the concept of levels and factors to our extended dataset (Table
3.1) means that the breed of an animal is a “factor” and the different breeds are
correspond to the different levels of the factor “breed”.

3.4.1 Model

The goal of the model that we are going to develop is to quantify the effect
of each level of the factor “breed” on the response variable “body weight”. In
a first step, all other variables with a potential influence on body weight are
ignored. Hence, we are just looking at the possible effect of the breed on body
weight. This is done by setting up a regression on three independent variables𝑥1, 𝑥2 and 𝑥3 𝑦𝑖 = 𝑏0 + 𝑏1𝑥𝑖1 + 𝑏2𝑥𝑖2 + 𝑏3𝑥𝑖3 + 𝑒𝑖 (3.11)

In this context 𝑦𝑖 is the body weight of animal 𝑖 and 𝑏0 and 𝑒𝑖 are the intercept
and the random error term which were already found in the regression analysis
of chapter 2. Corresponding to the independent variables 𝑥1, 𝑥2 and 𝑥3 are the
regression coefficents 𝑏1, 𝑏2 and 𝑏3, respectively. Depending on the definition
of the independent variables 𝑥, the regression coefficients 𝑏 will turn out to be
terms that lead to estimates of the differences of the effects of the different levels
on the response variable.
For the definition of the independent variables 𝑥, it is important to note that
each animal can only have one breed3 associated to it. Each level of the factor
“breed” is assigned to one of the indendent variables 𝑥1, 𝑥2 or 𝑥3. This assign-
ment is completely arbitrary. The assignment given in Table 3.4 is proposed.

Table 3.4: Assignment of Breeds to Independen Variables

Breed Independent Variable
Angus 𝑥1
Limousin 𝑥2
Simmental 𝑥3

For a given animal 𝑖 that is in breed 𝑗, the independent variable assigned to
breed 𝑗 is 1 and all other independent variables are set to 0. This means for
animal 1 from breed Angus, the variable 𝑥1 is set to 1 and all other variables
are set to 0.
For our example shown in Table 3.1 when only looking at body weight as re-
sponse and breed as a factor, 𝑦𝑖𝑗 stands for the 𝑗𝑡ℎ animal with breed-level 𝑖.

3At this point, we assume that all animals are pure-bred. Alternatively, we would interpret
crosses as further distinct levels of the factor “breed”.



3.4. REGRESSION ON DUMMY VARIABLES 35

Then with 𝑒𝑖𝑗 = 𝑦𝑖𝑗 − 𝐸(𝑦𝑖𝑗), the model is the same as in chapter 2, except for
the two subscripts and for the ordering the observations according to the levels
of the breed factor.

𝑦11 = 𝑏0 + 𝑏1 ∗ 1 + 𝑏2 ∗ 0 + 𝑏3 ∗ 0 + 𝑒11𝑦12 = 𝑏0 + 𝑏1 ∗ 1 + 𝑏2 ∗ 0 + 𝑏3 ∗ 0 + 𝑒12⋯ = ⋯𝑦33 = 𝑏0 + 𝑏1 ∗ 0 + 𝑏2 ∗ 0 + 𝑏3 ∗ 1 + 𝑒33 (3.12)

The system of equations shown in (3.12) can be converted into matrix-vector
notation which turns the model in the familiar form

y = Xb + e (3.13)

where y and e are both vectors of the same length as there are observations in
the dataset and are defined the same way as in the regression in chapter 2. The
vector b contains the intercept as the first component and regression coefficients
for each level of the factor “breed” in the model. The matrix X is called “design
matrix” and contains zeros and ones that link the regression coefficients of the
appropriate level to the observations.
Analogously to the regression model in chapter 2 the properties of the compo-
nents in vector e of random residuals are such that 𝐸(e) = 0 and 𝑣𝑎𝑟(e) = 𝐼𝜎2.
Applying the least squares procedure to (3.13) yields the same normal equations

X𝑇 Xb(0) = X𝑇 y (3.14)

Due to the definition of the matrix X, it does not have full column rank. Thus
the models as shown in (3.13) that contains factors is also referred to as “models
not of full rank”. An important consequence of the rank deficiency of the matrix
X is that the inverse (X𝑇 X)−1 of (X𝑇 X) does not exist. However the use of
a generalized inverse of (X𝑇 X) solutions to the normal equation (3.14) can be
found.

3.4.2 Parameter Estimation In Models Not Of Full Rank

The goal of model (3.13) is to get an estimate for the unknown parameters in
vector b.
The normal equations in (3.14) are written with the symbol b(0) to denote that
the equations do not have a single solution b(0) in the sense that we were able
to compute them in the case of the regression model. In the case where 𝑋𝑇 𝑋
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is singular, there are infinitely many solutions b(0). These solutions can be
expressed as

b(0) = (X𝑇 X)−X𝑇 y (3.15)

where (X𝑇 X)− stands for a generalized inverse of the matrix (X𝑇 X).
3.4.3 Generalized Inverse Matrices

A generalized inverse matrix G of a given matrix A is defined as the matrix
that satisfies the equation AGA = A. The matrix G is not unique. Applying
the concept of a generalized inverse to a system of equations Ax = y, it can be
shown that x = Gy is a solution, if G is a generalized inverse of A. Because G
is not unique, there are infinitely many solutions corresponding to x̃ = Gy +(GA − I)z where z can be an arbitrary vector of consistent length. Applying
these statements concerning generalized inverses and solutions to systems of
equations to (3.15), it means that b(0) is not a unique solution to (3.14) because
the generalized inverse (X𝑇 X)− is not unique. As a consequence of that non-
uniqueness, the solution b(0) is not suitable as an estimate of the unknown
parameter vector b.

3.4.4 Estimable Functions

The numeric solution of the analysis of the example dataset given in Table 3.1
is the topic of an exercise. When developing that solution, we will see that some
linear functions of b(0) can be found which do not depend on the choice of the
generalized inverse (X𝑇 X)−. Such functions are called estimable functions
and can be used as estimates for the respective functions of the unknown pa-
rameter vector b. The idea of estimable functions can be demonstrated with
the following example.

Let us assume that we have a small data set of 6 animals with observations in
a particular traits and the breed of the animal as an independent factor. The
dataset for that example is given in Table 3.5.

As shown before, we want to estimate the effect of the breed on the observation.
This can be done with the following fixed effects model.

y = Xb + e

with
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Table 3.5: Example Showing Estimable Functions

Animal Breed Observation
1 Angus 16
2 Angus 10
3 Angus 19
4 Simmental 11
5 Simmental 13
6 Limousin 27

Table 3.6: Solution of Normal Equations

Elements of Solution 𝑏01 𝑏02 𝑏03 𝑏04𝜇0 16 14 27 -2982𝛼01 -1 1 -12 2997𝛼02 -4 -2 -15 2994𝛼03 11 13 0 3009

y = ⎡⎢⎢⎢⎢⎣
161019111327

⎤⎥⎥⎥⎥⎦ , X = ⎡⎢⎢⎢⎢⎣
1 1 0 01 1 0 01 1 0 01 0 1 01 0 1 01 0 0 1

⎤⎥⎥⎥⎥⎦ and b = ⎡⎢⎢⎣
𝜇𝛼1𝛼2𝛼3

⎤⎥⎥⎦
The vector b of unknown parameters consist of the intercept 𝜇 which was pre-
viously called 𝑏0 and the three breed effects 𝛼1, 𝛼2 and 𝛼3. Based on the above
information, the normal equations can be written as

⎡⎢⎢⎣
6 3 2 13 3 0 02 0 2 01 0 0 1⎤⎥⎥⎦ ⎡⎢⎢⎣

𝜇0𝛼01𝛼02𝛼03
⎤⎥⎥⎦ = ⎡⎢⎢⎣

96452427⎤⎥⎥⎦
The above equations have infinitely many solutions. Four of them are shown
below in Table 3.6.

The differences between the same elements in the four numerical solutions make
it clear why no solution b0 can be used as estimates for the unknown parameters
in b.
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Table 3.7: Estimates of Estimable Functions

Linear Function 𝑏01 𝑏02 𝑏03 𝑏04𝛼01 − 𝛼02 3.0 3.0 3.0 3.0𝜇0 + 𝛼01 15.0 15.0 15.0 15.0𝜇0 + 1/2(𝛼02 + 𝛼03) 19.5 19.5 19.5 19.5

This problem can be addressed, if we are not considering the single elements of
a solution vector b0, but linear functions of these elements. Examples of such
linear functions are shown in Table 3.7.
The values of the expressions shown in Table 3.7 are invariant to whatever
solution 𝑏0 is selected. Because this invariance statement is true for all solutions
b0, these functions are of special interest which corresponds to

• 𝛼01 − 𝛼02: estimate of the difference between breed effects for Angus and
Simmental

• 𝜇0 + 𝛼01: estimate of the general mean plus the breed effect of Angus
• 𝜇0 +1/2(𝛼02 +𝛼03): estimate of the general mean plus mean effect of breeds

Simmental and Limousin

3.4.4.1 Definition of Estimable Functions

In summary the underlying idea of estimable functions are that they are linear
functions of the parameters b that do not depend on the numerical solutions
b0 of the normal equations. Because estimable functions are functions of the
parameters b, they can be expressed as q𝑇 b where q𝑇 is a row vector. In a more
formal way estimable functions can be described by the following definition.
Definition 3.1 (Estimable Function). A (linear) function of the parameters 𝑏
is defined as estimable, if it is identically equal to some linear function of the
expected value of the vector of observations 𝑦.

This means the linear function q𝑇 b is estimable, if

q𝑇 b = t𝑇 𝐸(y)
for some vector t. That means, if there exists a vector t, such that t𝑇 𝐸(y) =
q𝑇 b, then q𝑇 b is said to be estimable. For our example shown in Table 3.5, the
expected value of the observations of all animals with breed Angus is obtained
by 𝐸(𝑦1𝑗) = 𝜇 + 𝛼1
with t𝑇 = [ 1 1 1 0 0 0 ] and q𝑇 = [ 1 1 0 0 ]
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3.4.5 Properties of Estimable Functions

Among the many properties we are here just listing the ones that are considered
important. The complete list of properties can be found in [Searle, 1971].

3.4.5.1 Form of Estimable Function

If q𝑇 b is estimable, then q𝑇 b = t𝑇 𝐸(y) for some t. By definition 𝐸(y) = Xb
and therefore, q𝑇 b = t𝑇 Xb. Because estimability is not a concept that depends
on b, this result is true for all values of b. Therefore

q𝑡 = t𝑇 X
for some vector t.

3.4.5.2 Invariance to Solutions b0
If q𝑇 b is estimable, the linear function q𝑇 b0 is invariance to whatever solution
of the normal equation

X𝑇 Xb0 = X𝑇 y
is used for b0. This is because

q𝑇 b0 = t𝑇 Xb0 = t𝑇 XGX𝑇 y
where G is a generalized inverse of X𝑇 X and XGX𝑇 is invariant to G which
means that it is the same for any choice of G. This can be seen by the definition
of 𝐺 which has to satisfy that

X𝑇 XGX𝑇 X = X𝑇 X
in order to be a generalised inverse of X𝑇 X. Because X𝑇 is not a null matrix,
it follows that XGX𝑇 X = X. For any other generalised inverse matrix F of
X𝑇 X, we can write analogeously to above with the generalised inverse G that
X𝑇 XFX𝑇 X = X𝑇 X which implies that XFX𝑇 = XGX𝑇 . This can be shown
to be true for any generalised inverse of X𝑇 X

3.4.5.3 Testing for Estimability

A given function q𝑇 b is estimable, if some vector t can be found, such that
t𝑇 X = q𝑇 . For a known value of q, it might not be easy to find a vector t
satisfying t𝑇 X = q𝑇 . Alternatively to finding a vector t, estimability of q𝑇 b
can also be investigated by seeing whether q has the property that
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q𝑇 H = q𝑇
with H = GX𝑇 X. This is proved by the fact that if q𝑇 b is estimable, then
q𝑇 = t𝑇 X and q𝑇 H = t𝑇 XH = t𝑇 XGX𝑇 X = t𝑇 X = q𝑇 .

3.4.5.4 BLUE of Estimable Function

BLUE stands for Best Linear Unbiased Estimation. The BLUE of the estimable
function q𝑇 b is q𝑇 b0 that is

q̂𝑇 b = q𝑇 b0 (3.16)

where here the “hat” stands for “BLUE of”. For a proof of (3.16), it has to be
shown that properties of BLUE hold. The linearity holds because q𝑇 b0 is a
linear function of the observations, because q𝑇 b0 = q𝑇 GX𝑇 y. Unbiasedness
is checked by inspecting 𝐸(q𝑇 b0)

𝐸(q𝑇 b0) = q𝑇 𝐸(b0)= q𝑇 𝐸(GX𝑇 y)= q𝑇 GX𝑇 𝐸(y)= q𝑇 GX𝑇 Xb= q𝑇 Hb= t𝑇 XHb= t𝑇 Xb= q𝑇 b

using X = XH = XGX𝑇 X
To show that q𝑇 b0 is the best estimator among all linear estimators, we need
to show that it has minimum variance. The variance of q𝑇 b0 is

𝑣𝑎𝑟(q𝑇 b0) = q𝑇 ⋅ 𝑣𝑎𝑟(b0) ⋅ q= q𝑇 ⋅ 𝑣𝑎𝑟(GX𝑇 y) ⋅ q= q𝑇 GX𝑇 ⋅ 𝑣𝑎𝑟(y)XG𝑇 q= q𝑇 GX𝑇 XG𝑇 q𝜎2= q𝑇 GX𝑇 XG𝑇 X𝑇 t𝜎2= q𝑇 GX𝑇 t𝜎2= q𝑇 Gq𝜎2 (3.17)
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with 𝑣𝑎𝑟(𝑦) = I𝜎2. Suppose k𝑇 y is some other linear unbiased estimator of
q𝑇 b different from q𝑇 b0. Because k𝑇 y is unbiased 𝐸(k𝑇 y) = q𝑇 b and so
k𝑇 X = q𝑇 . Therefore,𝑐𝑜𝑣(q𝑇 b0, k𝑇 y) = 𝑐𝑜𝑣(q𝑇 GX𝑇 y, k𝑇 y) = q𝑇 GX𝑇 k 𝜎2 = q𝑇 Gq 𝜎2
Looking at the variance of the difference between q𝑇 b0 and k𝑇 y

𝑣𝑎𝑟(q𝑇 b0 − k𝑇 y) = 𝑣𝑎𝑟(q𝑇 b0) + 𝑣𝑎𝑟(k𝑇 y) − 2𝑐𝑜𝑣(q𝑇 b0, k𝑇 y)= 𝑣𝑎𝑟(k𝑇 y) − q𝑇 Gq 𝜎2= 𝑣𝑎𝑟(k𝑇 y) − 𝑣𝑎𝑟(q𝑇 b0) > 0
because a variance has to be positive. Hence 𝑣𝑎𝑟(k𝑇 y) > 𝑣𝑎𝑟(q𝑇 b0) which can
be shown for any linear unbiased estimator k𝑇 y and hence q𝑇 b0 is “best”.
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